Tue, 31 Dec 2024 09:25:45 -0500
New version of sliding.
34 | 1 | /*! |
2 | Solver for the point source localisation problem using a simplified forward-backward splitting method. | |
3 | ||
4 | Instead of the $𝒟$-norm of `fb.rs`, this uses a standard Radon norm for the proximal map. | |
5 | */ | |
6 | ||
7 | use numeric_literals::replace_float_literals; | |
8 | use serde::{Serialize, Deserialize}; | |
9 | use colored::Colorize; | |
10 | use nalgebra::DVector; | |
11 | ||
12 | use alg_tools::iterate::{ | |
13 | AlgIteratorFactory, | |
35 | 14 | AlgIteratorIteration, |
15 | AlgIterator | |
34 | 16 | }; |
17 | use alg_tools::euclidean::Euclidean; | |
35 | 18 | use alg_tools::linops::Mapping; |
34 | 19 | use alg_tools::sets::Cube; |
20 | use alg_tools::loc::Loc; | |
21 | use alg_tools::bisection_tree::{ | |
22 | BTFN, | |
23 | Bounds, | |
24 | BTNodeLookup, | |
25 | BTNode, | |
26 | BTSearch, | |
27 | P2Minimise, | |
28 | SupportGenerator, | |
29 | LocalAnalysis, | |
30 | }; | |
31 | use alg_tools::mapping::RealMapping; | |
32 | use alg_tools::nalgebra_support::ToNalgebraRealField; | |
35 | 33 | use alg_tools::norms::L2; |
34 | 34 | |
35 | use crate::types::*; | |
36 | use crate::measures::{ | |
35 | 37 | RNDM, |
34 | 38 | DiscreteMeasure, |
39 | DeltaMeasure, | |
35 | 40 | Radon, |
34 | 41 | }; |
42 | use crate::measures::merging::{ | |
43 | SpikeMergingMethod, | |
44 | SpikeMerging, | |
45 | }; | |
46 | use crate::forward_model::ForwardModel; | |
47 | use crate::plot::{ | |
48 | SeqPlotter, | |
49 | Plotting, | |
50 | PlotLookup | |
51 | }; | |
52 | use crate::regularisation::RegTerm; | |
53 | use crate::dataterm::{ | |
54 | calculate_residual, | |
55 | L2Squared, | |
56 | DataTerm, | |
57 | }; | |
58 | ||
59 | use crate::fb::{ | |
60 | FBGenericConfig, | |
35 | 61 | postprocess, |
62 | prune_with_stats | |
34 | 63 | }; |
64 | ||
35 | 65 | /// Settings for [`pointsource_radon_fb_reg`]. |
34 | 66 | #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] |
67 | #[serde(default)] | |
68 | pub struct RadonFBConfig<F : Float> { | |
69 | /// Step length scaling | |
70 | pub τ0 : F, | |
71 | /// Generic parameters | |
72 | pub insertion : FBGenericConfig<F>, | |
73 | } | |
74 | ||
75 | #[replace_float_literals(F::cast_from(literal))] | |
76 | impl<F : Float> Default for RadonFBConfig<F> { | |
77 | fn default() -> Self { | |
78 | RadonFBConfig { | |
79 | τ0 : 0.99, | |
80 | insertion : Default::default() | |
81 | } | |
82 | } | |
83 | } | |
84 | ||
85 | #[replace_float_literals(F::cast_from(literal))] | |
86 | pub(crate) fn insert_and_reweigh< | |
35 | 87 | 'a, F, GA, BTA, S, Reg, I, const N : usize |
34 | 88 | >( |
35 | 89 | μ : &mut RNDM<F, N>, |
90 | τv : &mut BTFN<F, GA, BTA, N>, | |
91 | μ_base : &mut RNDM<F, N>, | |
92 | //_ν_delta: Option<&RNDM<F, N>>, | |
34 | 93 | τ : F, |
94 | ε : F, | |
95 | config : &FBGenericConfig<F>, | |
96 | reg : &Reg, | |
35 | 97 | _state : &AlgIteratorIteration<I>, |
34 | 98 | stats : &mut IterInfo<F, N>, |
99 | ) | |
100 | where F : Float + ToNalgebraRealField, | |
101 | GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, | |
102 | BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, | |
103 | S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
104 | BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, | |
35 | 105 | RNDM<F, N> : SpikeMerging<F>, |
34 | 106 | Reg : RegTerm<F, N>, |
35 | 107 | I : AlgIterator { |
34 | 108 | |
109 | 'i_and_w: for i in 0..=1 { | |
110 | // Optimise weights | |
111 | if μ.len() > 0 { | |
112 | // Form finite-dimensional subproblem. The subproblem references to the original μ^k | |
113 | // from the beginning of the iteration are all contained in the immutable c and g. | |
35 | 114 | // TODO: observe negation of -τv after switch from minus_τv: finite-dimensional |
115 | // problems have not yet been updated to sign change. | |
34 | 116 | let g̃ = DVector::from_iterator(μ.len(), |
117 | μ.iter_locations() | |
35 | 118 | .map(|ζ| - F::to_nalgebra_mixed(τv.apply(ζ)))); |
34 | 119 | let mut x = μ.masses_dvector(); |
120 | let y = μ_base.masses_dvector(); | |
121 | ||
122 | // Solve finite-dimensional subproblem. | |
123 | stats.inner_iters += reg.solve_findim_l1squared(&y, &g̃, τ, &mut x, ε, config); | |
124 | ||
125 | // Update masses of μ based on solution of finite-dimensional subproblem. | |
126 | μ.set_masses_dvector(&x); | |
127 | } | |
128 | ||
129 | if i>0 { | |
130 | // Simple debugging test to see if more inserts would be needed. Doesn't seem so. | |
131 | //let n = μ.dist_matching(μ_base); | |
35 | 132 | //println!("{:?}", reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n)); |
34 | 133 | break 'i_and_w |
134 | } | |
135 | ||
136 | // Calculate ‖μ - μ_base‖_ℳ | |
137 | let n = μ.dist_matching(μ_base); | |
138 | ||
139 | // Find a spike to insert, if needed. | |
140 | // This only check the overall tolerances, not tolerances on support of μ-μ_base or μ, | |
141 | // which are supposed to have been guaranteed by the finite-dimensional weight optimisation. | |
35 | 142 | match reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n) { |
34 | 143 | None => { break 'i_and_w }, |
144 | Some((ξ, _v_ξ, _in_bounds)) => { | |
145 | // Weight is found out by running the finite-dimensional optimisation algorithm | |
146 | // above | |
147 | *μ += DeltaMeasure { x : ξ, α : 0.0 }; | |
148 | *μ_base += DeltaMeasure { x : ξ, α : 0.0 }; | |
35 | 149 | stats.inserted += 1; |
34 | 150 | } |
151 | }; | |
152 | } | |
153 | } | |
154 | ||
155 | ||
156 | /// Iteratively solve the pointsource localisation problem using simplified forward-backward splitting. | |
157 | /// | |
35 | 158 | /// The settings in `config` have their [respective documentation][RadonFBConfig]. `opA` is the |
34 | 159 | /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. |
160 | /// Finally, the `iterator` is an outer loop verbosity and iteration count control | |
161 | /// as documented in [`alg_tools::iterate`]. | |
162 | /// | |
163 | /// For details on the mathematical formulation, see the [module level](self) documentation. | |
164 | /// | |
165 | /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of | |
166 | /// sums of simple functions usign bisection trees, and the related | |
167 | /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions | |
168 | /// active at a specific points, and to maximise their sums. Through the implementation of the | |
169 | /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features | |
170 | /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. | |
171 | /// | |
172 | /// Returns the final iterate. | |
173 | #[replace_float_literals(F::cast_from(literal))] | |
174 | pub fn pointsource_radon_fb_reg< | |
175 | 'a, F, I, A, GA, BTA, S, Reg, const N : usize | |
176 | >( | |
177 | opA : &'a A, | |
178 | b : &A::Observable, | |
179 | reg : Reg, | |
180 | fbconfig : &RadonFBConfig<F>, | |
181 | iterator : I, | |
182 | mut _plotter : SeqPlotter<F, N>, | |
35 | 183 | ) -> RNDM<F, N> |
34 | 184 | where F : Float + ToNalgebraRealField, |
185 | I : AlgIteratorFactory<IterInfo<F, N>>, | |
186 | for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, | |
187 | GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, | |
35 | 188 | A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>>, |
34 | 189 | BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
190 | S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
191 | BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, | |
192 | Cube<F, N>: P2Minimise<Loc<F, N>, F>, | |
35 | 193 | RNDM<F, N> : SpikeMerging<F>, |
34 | 194 | Reg : RegTerm<F, N> { |
195 | ||
196 | // Set up parameters | |
197 | let config = &fbconfig.insertion; | |
198 | // We need L such that the descent inequality F(ν) - F(μ) - ⟨F'(μ),ν-μ⟩ ≤ (L/2)‖ν-μ‖²_ℳ ∀ ν,μ | |
199 | // holds. Since the left hand side expands as (1/2)‖A(ν-μ)‖₂², this is to say, we need L such | |
200 | // that ‖Aμ‖₂² ≤ L ‖μ‖²_ℳ ∀ μ. Thus `opnorm_bound` gives the square root of L. | |
35 | 201 | let τ = fbconfig.τ0/opA.opnorm_bound(Radon, L2).powi(2); |
34 | 202 | // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled |
203 | // by τ compared to the conditional gradient approach. | |
204 | let tolerance = config.tolerance * τ * reg.tolerance_scaling(); | |
205 | let mut ε = tolerance.initial(); | |
206 | ||
207 | // Initialise iterates | |
208 | let mut μ = DiscreteMeasure::new(); | |
209 | let mut residual = -b; | |
35 | 210 | |
211 | // Statistics | |
212 | let full_stats = |residual : &A::Observable, | |
213 | μ : &RNDM<F, N>, | |
214 | ε, stats| IterInfo { | |
215 | value : residual.norm2_squared_div2() + reg.apply(μ), | |
216 | n_spikes : μ.len(), | |
217 | ε, | |
218 | // postprocessing: config.postprocessing.then(|| μ.clone()), | |
219 | .. stats | |
220 | }; | |
34 | 221 | let mut stats = IterInfo::new(); |
222 | ||
223 | // Run the algorithm | |
35 | 224 | for state in iterator.iter_init(|| full_stats(&residual, &μ, ε, stats.clone())) { |
34 | 225 | // Calculate smooth part of surrogate model. |
35 | 226 | let mut τv = opA.preadjoint().apply(residual * τ); |
34 | 227 | |
228 | // Save current base point | |
229 | let mut μ_base = μ.clone(); | |
230 | ||
231 | // Insert and reweigh | |
232 | insert_and_reweigh( | |
35 | 233 | &mut μ, &mut τv, &mut μ_base, //None, |
34 | 234 | τ, ε, |
35 | 235 | config, ®, &state, &mut stats |
34 | 236 | ); |
237 | ||
238 | // Prune and possibly merge spikes | |
35 | 239 | assert!(μ_base.len() <= μ.len()); |
240 | if config.merge_now(&state) { | |
241 | stats.merged += μ.merge_spikes(config.merging, |μ_candidate| { | |
242 | // Important: μ_candidate's new points are afterwards, | |
243 | // and do not conflict with μ_base. | |
244 | // TODO: could simplify to requiring μ_base instead of μ_radon. | |
245 | // but may complicate with sliding base's exgtra points that need to be | |
246 | // after μ_candidate's extra points. | |
247 | // TODO: doesn't seem to work, maybe need to merge μ_base as well? | |
248 | // Although that doesn't seem to make sense. | |
249 | let μ_radon = μ_candidate.sub_matching(&μ_base); | |
250 | reg.verify_merge_candidate_radonsq(&mut τv, μ_candidate, τ, ε, &config, &μ_radon) | |
251 | //let n = μ_candidate.dist_matching(μ_base); | |
252 | //reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n).is_none() | |
253 | }); | |
254 | } | |
255 | stats.pruned += prune_with_stats(&mut μ); | |
34 | 256 | |
257 | // Update residual | |
258 | residual = calculate_residual(&μ, opA, b); | |
259 | ||
35 | 260 | let iter = state.iteration(); |
34 | 261 | stats.this_iters += 1; |
262 | ||
35 | 263 | // Give statistics if needed |
34 | 264 | state.if_verbose(|| { |
35 | 265 | full_stats(&residual, &μ, ε, std::mem::replace(&mut stats, IterInfo::new())) |
266 | }); | |
267 | ||
268 | // Update main tolerance for next iteration | |
269 | ε = tolerance.update(ε, iter); | |
270 | } | |
34 | 271 | |
272 | postprocess(μ, config, L2Squared, opA, b) | |
273 | } | |
274 | ||
275 | /// Iteratively solve the pointsource localisation problem using simplified inertial forward-backward splitting. | |
276 | /// | |
35 | 277 | /// The settings in `config` have their [respective documentation][RadonFBConfig]. `opA` is the |
34 | 278 | /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. |
279 | /// Finally, the `iterator` is an outer loop verbosity and iteration count control | |
280 | /// as documented in [`alg_tools::iterate`]. | |
281 | /// | |
282 | /// For details on the mathematical formulation, see the [module level](self) documentation. | |
283 | /// | |
284 | /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of | |
285 | /// sums of simple functions usign bisection trees, and the related | |
286 | /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions | |
287 | /// active at a specific points, and to maximise their sums. Through the implementation of the | |
288 | /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features | |
289 | /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. | |
290 | /// | |
291 | /// Returns the final iterate. | |
292 | #[replace_float_literals(F::cast_from(literal))] | |
293 | pub fn pointsource_radon_fista_reg< | |
294 | 'a, F, I, A, GA, BTA, S, Reg, const N : usize | |
295 | >( | |
296 | opA : &'a A, | |
297 | b : &A::Observable, | |
298 | reg : Reg, | |
299 | fbconfig : &RadonFBConfig<F>, | |
300 | iterator : I, | |
35 | 301 | mut plotter : SeqPlotter<F, N>, |
302 | ) -> RNDM<F, N> | |
34 | 303 | where F : Float + ToNalgebraRealField, |
304 | I : AlgIteratorFactory<IterInfo<F, N>>, | |
305 | for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, | |
306 | GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, | |
35 | 307 | A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>>, |
34 | 308 | BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
309 | S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
310 | BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, | |
311 | Cube<F, N>: P2Minimise<Loc<F, N>, F>, | |
312 | PlotLookup : Plotting<N>, | |
35 | 313 | RNDM<F, N> : SpikeMerging<F>, |
34 | 314 | Reg : RegTerm<F, N> { |
315 | ||
316 | // Set up parameters | |
317 | let config = &fbconfig.insertion; | |
318 | // We need L such that the descent inequality F(ν) - F(μ) - ⟨F'(μ),ν-μ⟩ ≤ (L/2)‖ν-μ‖²_ℳ ∀ ν,μ | |
319 | // holds. Since the left hand side expands as (1/2)‖A(ν-μ)‖₂², this is to say, we need L such | |
320 | // that ‖Aμ‖₂² ≤ L ‖μ‖²_ℳ ∀ μ. Thus `opnorm_bound` gives the square root of L. | |
35 | 321 | let τ = fbconfig.τ0/opA.opnorm_bound(Radon, L2).powi(2); |
34 | 322 | let mut λ = 1.0; |
323 | // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled | |
324 | // by τ compared to the conditional gradient approach. | |
325 | let tolerance = config.tolerance * τ * reg.tolerance_scaling(); | |
326 | let mut ε = tolerance.initial(); | |
327 | ||
328 | // Initialise iterates | |
329 | let mut μ = DiscreteMeasure::new(); | |
330 | let mut μ_prev = DiscreteMeasure::new(); | |
331 | let mut residual = -b; | |
35 | 332 | let mut warned_merging = false; |
333 | ||
334 | // Statistics | |
335 | let full_stats = |ν : &RNDM<F, N>, ε, stats| IterInfo { | |
336 | value : L2Squared.calculate_fit_op(ν, opA, b) + reg.apply(ν), | |
337 | n_spikes : ν.len(), | |
338 | ε, | |
339 | // postprocessing: config.postprocessing.then(|| ν.clone()), | |
340 | .. stats | |
341 | }; | |
34 | 342 | let mut stats = IterInfo::new(); |
343 | ||
344 | // Run the algorithm | |
35 | 345 | for state in iterator.iter_init(|| full_stats(&μ, ε, stats.clone())) { |
34 | 346 | // Calculate smooth part of surrogate model. |
35 | 347 | let mut τv = opA.preadjoint().apply(residual * τ); |
34 | 348 | |
349 | // Save current base point | |
350 | let mut μ_base = μ.clone(); | |
351 | ||
352 | // Insert new spikes and reweigh | |
353 | insert_and_reweigh( | |
35 | 354 | &mut μ, &mut τv, &mut μ_base, //None, |
34 | 355 | τ, ε, |
35 | 356 | config, ®, &state, &mut stats |
34 | 357 | ); |
358 | ||
359 | // (Do not) merge spikes. | |
35 | 360 | if config.merge_now(&state) { |
34 | 361 | match config.merging { |
362 | SpikeMergingMethod::None => { }, | |
363 | _ => if !warned_merging { | |
364 | let err = format!("Merging not supported for μFISTA"); | |
365 | println!("{}", err.red()); | |
366 | warned_merging = true; | |
367 | } | |
368 | } | |
369 | } | |
370 | ||
371 | // Update inertial prameters | |
372 | let λ_prev = λ; | |
373 | λ = 2.0 * λ_prev / ( λ_prev + (4.0 + λ_prev * λ_prev).sqrt() ); | |
374 | let θ = λ / λ_prev - λ; | |
375 | ||
376 | // Perform inertial update on μ. | |
377 | // This computes μ ← (1 + θ) * μ - θ * μ_prev, pruning spikes where both μ | |
378 | // and μ_prev have zero weight. Since both have weights from the finite-dimensional | |
379 | // subproblem with a proximal projection step, this is likely to happen when the | |
380 | // spike is not needed. A copy of the pruned μ without artithmetic performed is | |
381 | // stored in μ_prev. | |
382 | let n_before_prune = μ.len(); | |
383 | μ.pruning_sub(1.0 + θ, θ, &mut μ_prev); | |
384 | debug_assert!(μ.len() <= n_before_prune); | |
385 | stats.pruned += n_before_prune - μ.len(); | |
386 | ||
387 | // Update residual | |
388 | residual = calculate_residual(&μ, opA, b); | |
35 | 389 | |
390 | let iter = state.iteration(); | |
34 | 391 | stats.this_iters += 1; |
392 | ||
35 | 393 | // Give statistics if needed |
34 | 394 | state.if_verbose(|| { |
35 | 395 | plotter.plot_spikes(iter, Option::<&S>::None, Some(&τv), &μ_prev); |
396 | full_stats(&μ_prev, ε, std::mem::replace(&mut stats, IterInfo::new())) | |
397 | }); | |
398 | ||
399 | // Update main tolerance for next iteration | |
400 | ε = tolerance.update(ε, iter); | |
401 | } | |
34 | 402 | |
403 | postprocess(μ_prev, config, L2Squared, opA, b) | |
404 | } |