src/radon_fb.rs

branch
dev
changeset 34
efa60bc4f743
child 35
b087e3eab191
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/radon_fb.rs	Thu Aug 29 00:00:00 2024 -0500
@@ -0,0 +1,455 @@
+/*!
+Solver for the point source localisation problem using a simplified forward-backward splitting method.
+
+Instead of the $𝒟$-norm of `fb.rs`, this uses a standard Radon norm for the proximal map.
+*/
+
+use numeric_literals::replace_float_literals;
+use serde::{Serialize, Deserialize};
+use colored::Colorize;
+use nalgebra::DVector;
+
+use alg_tools::iterate::{
+    AlgIteratorFactory,
+    AlgIteratorState,
+};
+use alg_tools::euclidean::Euclidean;
+use alg_tools::linops::Apply;
+use alg_tools::sets::Cube;
+use alg_tools::loc::Loc;
+use alg_tools::bisection_tree::{
+    BTFN,
+    Bounds,
+    BTNodeLookup,
+    BTNode,
+    BTSearch,
+    P2Minimise,
+    SupportGenerator,
+    LocalAnalysis,
+};
+use alg_tools::mapping::RealMapping;
+use alg_tools::nalgebra_support::ToNalgebraRealField;
+
+use crate::types::*;
+use crate::measures::{
+    DiscreteMeasure,
+    DeltaMeasure,
+};
+use crate::measures::merging::{
+    SpikeMergingMethod,
+    SpikeMerging,
+};
+use crate::forward_model::ForwardModel;
+use crate::plot::{
+    SeqPlotter,
+    Plotting,
+    PlotLookup
+};
+use crate::regularisation::RegTerm;
+use crate::dataterm::{
+    calculate_residual,
+    L2Squared,
+    DataTerm,
+};
+
+use crate::fb::{
+    FBGenericConfig,
+    postprocess
+};
+
+/// Settings for [`pointsource_fb_reg`].
+#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)]
+#[serde(default)]
+pub struct RadonFBConfig<F : Float> {
+    /// Step length scaling
+    pub τ0 : F,
+    /// Generic parameters
+    pub insertion : FBGenericConfig<F>,
+}
+
+#[replace_float_literals(F::cast_from(literal))]
+impl<F : Float> Default for RadonFBConfig<F> {
+    fn default() -> Self {
+        RadonFBConfig {
+            τ0 : 0.99,
+            insertion : Default::default()
+        }
+    }
+}
+
+#[replace_float_literals(F::cast_from(literal))]
+pub(crate) fn insert_and_reweigh<
+    'a, F, GA, BTA, S, Reg, State, const N : usize
+>(
+    μ : &mut DiscreteMeasure<Loc<F, N>, F>,
+    minus_τv : &mut BTFN<F, GA, BTA, N>,
+    μ_base : &mut DiscreteMeasure<Loc<F, N>, F>,
+    _ν_delta: Option<&DiscreteMeasure<Loc<F, N>, F>>,
+    τ : F,
+    ε : F,
+    config : &FBGenericConfig<F>,
+    reg : &Reg,
+    _state : &State,
+    stats : &mut IterInfo<F, N>,
+)
+where F : Float + ToNalgebraRealField,
+      GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone,
+      BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>,
+      S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>,
+      BTNodeLookup: BTNode<F, usize, Bounds<F>, N>,
+      DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>,
+      Reg : RegTerm<F, N>,
+      State : AlgIteratorState {
+
+    'i_and_w: for i in 0..=1 {
+        // Optimise weights
+        if μ.len() > 0 {
+            // Form finite-dimensional subproblem. The subproblem references to the original μ^k
+            // from the beginning of the iteration are all contained in the immutable c and g.
+            let g̃ = DVector::from_iterator(μ.len(),
+                                           μ.iter_locations()
+                                            .map(|ζ| F::to_nalgebra_mixed(minus_τv.apply(ζ))));
+            let mut x = μ.masses_dvector();
+            let y = μ_base.masses_dvector();
+
+            // Solve finite-dimensional subproblem.
+            stats.inner_iters += reg.solve_findim_l1squared(&y, &g̃, τ, &mut x, ε, config);
+
+            // Update masses of μ based on solution of finite-dimensional subproblem.
+            μ.set_masses_dvector(&x);
+        }
+
+        if i>0 {
+            // Simple debugging test to see if more inserts would be needed. Doesn't seem so.
+            //let n = μ.dist_matching(μ_base);
+            //println!("{:?}", reg.find_tolerance_violation_slack(minus_τv, τ, ε, false, config, n));
+            break 'i_and_w
+        }
+        
+        // Calculate ‖μ - μ_base‖_ℳ
+        let n = μ.dist_matching(μ_base);
+       
+        // Find a spike to insert, if needed.
+        // This only check the overall tolerances, not tolerances on support of μ-μ_base or μ,
+        // which are supposed to have been guaranteed by the finite-dimensional weight optimisation.
+        match reg.find_tolerance_violation_slack(minus_τv, τ, ε, false, config, n) {
+            None => { break 'i_and_w },
+            Some((ξ, _v_ξ, _in_bounds)) => {
+                // Weight is found out by running the finite-dimensional optimisation algorithm
+                // above
+                *μ += DeltaMeasure { x : ξ, α : 0.0 };
+                *μ_base += DeltaMeasure { x : ξ, α : 0.0 };
+            }
+        };
+    }
+}
+
+#[replace_float_literals(F::cast_from(literal))]
+pub(crate) fn prune_and_maybe_simple_merge<
+    'a, F, GA, BTA, S, Reg, State, const N : usize
+>(
+    μ : &mut DiscreteMeasure<Loc<F, N>, F>,
+    minus_τv : &mut BTFN<F, GA, BTA, N>,
+    μ_base : &DiscreteMeasure<Loc<F, N>, F>,
+    τ : F,
+    ε : F,
+    config : &FBGenericConfig<F>,
+    reg : &Reg,
+    state : &State,
+    stats : &mut IterInfo<F, N>,
+)
+where F : Float + ToNalgebraRealField,
+      GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone,
+      BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>,
+      S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>,
+      BTNodeLookup: BTNode<F, usize, Bounds<F>, N>,
+      DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>,
+      Reg : RegTerm<F, N>,
+      State : AlgIteratorState {
+
+    assert!(μ_base.len() <= μ.len());
+
+    if state.iteration() % config.merge_every == 0 {
+        stats.merged += μ.merge_spikes(config.merging, |μ_candidate| {
+            // Important: μ_candidate's new points are afterwards,
+            // and do not conflict with μ_base.
+            // TODO: could simplify to requiring μ_base instead of μ_radon.
+            // but may complicate with sliding base's exgtra points that need to be
+            // after μ_candidate's extra points.
+            // TODO: doesn't seem to work, maybe need to merge μ_base as well?
+            // Although that doesn't seem to make sense.
+            let μ_radon = μ_candidate.sub_matching(μ_base);
+            reg.verify_merge_candidate_radonsq(minus_τv, μ_candidate, τ, ε, &config, &μ_radon)
+            //let n = μ_candidate.dist_matching(μ_base);
+            //reg.find_tolerance_violation_slack(minus_τv, τ, ε, false, config, n).is_none()
+        });
+    }
+
+    let n_before_prune = μ.len();
+    μ.prune();
+    debug_assert!(μ.len() <= n_before_prune);
+    stats.pruned += n_before_prune - μ.len();
+}
+
+
+/// Iteratively solve the pointsource localisation problem using simplified forward-backward splitting.
+///
+/// The settings in `config` have their [respective documentation](FBConfig). `opA` is the
+/// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight.
+/// Finally, the `iterator` is an outer loop verbosity and iteration count control
+/// as documented in [`alg_tools::iterate`].
+///
+/// For details on the mathematical formulation, see the [module level](self) documentation.
+///
+/// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of
+/// sums of simple functions usign bisection trees, and the related
+/// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions
+/// active at a specific points, and to maximise their sums. Through the implementation of the
+/// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features
+/// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions.
+///
+/// Returns the final iterate.
+#[replace_float_literals(F::cast_from(literal))]
+pub fn pointsource_radon_fb_reg<
+    'a, F, I, A, GA, BTA, S, Reg, const N : usize
+>(
+    opA : &'a A,
+    b : &A::Observable,
+    reg : Reg,
+    fbconfig : &RadonFBConfig<F>,
+    iterator : I,
+    mut _plotter : SeqPlotter<F, N>,
+) -> DiscreteMeasure<Loc<F, N>, F>
+where F : Float + ToNalgebraRealField,
+      I : AlgIteratorFactory<IterInfo<F, N>>,
+      for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>,
+                                  //+ std::ops::Mul<F, Output=A::Observable>,  <-- FIXME: compiler overflow
+      A::Observable : std::ops::MulAssign<F>,
+      GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone,
+      A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>>,
+      BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>,
+      S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>,
+      BTNodeLookup: BTNode<F, usize, Bounds<F>, N>,
+      Cube<F, N>: P2Minimise<Loc<F, N>, F>,
+      PlotLookup : Plotting<N>,
+      DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>,
+      Reg : RegTerm<F, N> {
+
+    // Set up parameters
+    let config = &fbconfig.insertion;
+    // We need L such that the descent inequality F(ν) - F(μ) - ⟨F'(μ),ν-μ⟩ ≤ (L/2)‖ν-μ‖²_ℳ ∀ ν,μ
+    // holds. Since the left hand side expands as (1/2)‖A(ν-μ)‖₂², this is to say, we need L such
+    // that ‖Aμ‖₂² ≤ L ‖μ‖²_ℳ ∀ μ. Thus `opnorm_bound` gives the square root of L.
+    let τ = fbconfig.τ0/opA.opnorm_bound().powi(2);
+    // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled
+    // by τ compared to the conditional gradient approach.
+    let tolerance = config.tolerance * τ * reg.tolerance_scaling();
+    let mut ε = tolerance.initial();
+
+    // Initialise iterates
+    let mut μ = DiscreteMeasure::new();
+    let mut residual = -b;
+    let mut stats = IterInfo::new();
+
+    // Run the algorithm
+    iterator.iterate(|state| {
+        // Calculate smooth part of surrogate model.
+        // Using `std::mem::replace` here is not ideal, and expects that `empty_observable`
+        // has no significant overhead. For some reosn Rust doesn't allow us simply moving
+        // the residual and replacing it below before the end of this closure.
+        residual *= -τ;
+        let r = std::mem::replace(&mut residual, opA.empty_observable());
+        let mut minus_τv = opA.preadjoint().apply(r);
+
+        // Save current base point
+        let mut μ_base = μ.clone();
+            
+        // Insert and reweigh
+        insert_and_reweigh(
+            &mut μ, &mut minus_τv, &mut μ_base, None,
+            τ, ε,
+            config, &reg, state, &mut stats
+        );
+
+        // Prune and possibly merge spikes
+        prune_and_maybe_simple_merge(
+            &mut μ, &mut minus_τv, &μ_base,
+            τ, ε,
+            config, &reg, state, &mut stats
+        );
+
+        // Update residual
+        residual = calculate_residual(&μ, opA, b);
+
+        // Update main tolerance for next iteration
+        let ε_prev = ε;
+        ε = tolerance.update(ε, state.iteration());
+        stats.this_iters += 1;
+
+        // Give function value if needed
+        state.if_verbose(|| {
+            // Plot if so requested
+            // plotter.plot_spikes(
+            //     format!("iter {} end;", state.iteration()), &d,
+            //     "start".to_string(), Some(&minus_τv),
+            //     reg.target_bounds(τ, ε_prev), &μ,
+            // );
+            // Calculate mean inner iterations and reset relevant counters.
+            // Return the statistics
+            let res = IterInfo {
+                value : residual.norm2_squared_div2() + reg.apply(&μ),
+                n_spikes : μ.len(),
+                ε : ε_prev,
+                postprocessing: config.postprocessing.then(|| μ.clone()),
+                .. stats
+            };
+            stats = IterInfo::new();
+            res
+        })
+    });
+
+    postprocess(μ, config, L2Squared, opA, b)
+}
+
+/// Iteratively solve the pointsource localisation problem using simplified inertial forward-backward splitting.
+///
+/// The settings in `config` have their [respective documentation](FBConfig). `opA` is the
+/// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight.
+/// Finally, the `iterator` is an outer loop verbosity and iteration count control
+/// as documented in [`alg_tools::iterate`].
+///
+/// For details on the mathematical formulation, see the [module level](self) documentation.
+///
+/// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of
+/// sums of simple functions usign bisection trees, and the related
+/// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions
+/// active at a specific points, and to maximise their sums. Through the implementation of the
+/// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features
+/// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions.
+///
+/// Returns the final iterate.
+#[replace_float_literals(F::cast_from(literal))]
+pub fn pointsource_radon_fista_reg<
+    'a, F, I, A, GA, BTA, S, Reg, const N : usize
+>(
+    opA : &'a A,
+    b : &A::Observable,
+    reg : Reg,
+    fbconfig : &RadonFBConfig<F>,
+    iterator : I,
+    mut _plotter : SeqPlotter<F, N>,
+) -> DiscreteMeasure<Loc<F, N>, F>
+where F : Float + ToNalgebraRealField,
+      I : AlgIteratorFactory<IterInfo<F, N>>,
+      for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>,
+                                  //+ std::ops::Mul<F, Output=A::Observable>,  <-- FIXME: compiler overflow
+      A::Observable : std::ops::MulAssign<F>,
+      GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone,
+      A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>>,
+      BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>,
+      S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>,
+      BTNodeLookup: BTNode<F, usize, Bounds<F>, N>,
+      Cube<F, N>: P2Minimise<Loc<F, N>, F>,
+      PlotLookup : Plotting<N>,
+      DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>,
+      Reg : RegTerm<F, N> {
+
+    // Set up parameters
+    let config = &fbconfig.insertion;
+    // We need L such that the descent inequality F(ν) - F(μ) - ⟨F'(μ),ν-μ⟩ ≤ (L/2)‖ν-μ‖²_ℳ ∀ ν,μ
+    // holds. Since the left hand side expands as (1/2)‖A(ν-μ)‖₂², this is to say, we need L such
+    // that ‖Aμ‖₂² ≤ L ‖μ‖²_ℳ ∀ μ. Thus `opnorm_bound` gives the square root of L.
+    let τ = fbconfig.τ0/opA.opnorm_bound().powi(2);
+    let mut λ = 1.0;
+    // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled
+    // by τ compared to the conditional gradient approach.
+    let tolerance = config.tolerance * τ * reg.tolerance_scaling();
+    let mut ε = tolerance.initial();
+
+    // Initialise iterates
+    let mut μ = DiscreteMeasure::new();
+    let mut μ_prev = DiscreteMeasure::new();
+    let mut residual = -b;
+    let mut stats = IterInfo::new();
+    let mut warned_merging = false;
+
+    // Run the algorithm
+    iterator.iterate(|state| {
+        // Calculate smooth part of surrogate model.
+        // Using `std::mem::replace` here is not ideal, and expects that `empty_observable`
+        // has no significant overhead. For some reosn Rust doesn't allow us simply moving
+        // the residual and replacing it below before the end of this closure.
+        residual *= -τ;
+        let r = std::mem::replace(&mut residual, opA.empty_observable());
+        let mut minus_τv = opA.preadjoint().apply(r);
+
+        // Save current base point
+        let mut μ_base = μ.clone();
+            
+        // Insert new spikes and reweigh
+        insert_and_reweigh(
+            &mut μ, &mut minus_τv, &mut μ_base, None,
+            τ, ε,
+            config, &reg, state, &mut stats
+        );
+
+        // (Do not) merge spikes.
+        if state.iteration() % config.merge_every == 0 {
+            match config.merging {
+                SpikeMergingMethod::None => { },
+                _ => if !warned_merging {
+                    let err = format!("Merging not supported for μFISTA");
+                    println!("{}", err.red());
+                    warned_merging = true;
+                }
+            }
+        }
+
+        // Update inertial prameters
+        let λ_prev = λ;
+        λ = 2.0 * λ_prev / ( λ_prev + (4.0 + λ_prev * λ_prev).sqrt() );
+        let θ = λ / λ_prev - λ;
+
+        // Perform inertial update on μ.
+        // This computes μ ← (1 + θ) * μ - θ * μ_prev, pruning spikes where both μ
+        // and μ_prev have zero weight. Since both have weights from the finite-dimensional
+        // subproblem with a proximal projection step, this is likely to happen when the
+        // spike is not needed. A copy of the pruned μ without artithmetic performed is
+        // stored in μ_prev.
+        let n_before_prune = μ.len();
+        μ.pruning_sub(1.0 + θ, θ, &mut μ_prev);
+        debug_assert!(μ.len() <= n_before_prune);
+        stats.pruned += n_before_prune - μ.len();
+
+        // Update residual
+        residual = calculate_residual(&μ, opA, b);
+
+        // Update main tolerance for next iteration
+        let ε_prev = ε;
+        ε = tolerance.update(ε, state.iteration());
+        stats.this_iters += 1;
+
+        // Give function value if needed
+        state.if_verbose(|| {
+            // Plot if so requested
+            // plotter.plot_spikes(
+            //     format!("iter {} end;", state.iteration()), &d,
+            //     "start".to_string(), Some(&minus_τv),
+            //     reg.target_bounds(τ, ε_prev), &μ_prev,
+            // );
+            // Calculate mean inner iterations and reset relevant counters.
+            // Return the statistics
+            let res = IterInfo {
+                value : L2Squared.calculate_fit_op(&μ_prev, opA, b) + reg.apply(&μ_prev),
+                n_spikes : μ_prev.len(),
+                ε : ε_prev,
+                postprocessing: config.postprocessing.then(|| μ_prev.clone()),
+                .. stats
+            };
+            stats = IterInfo::new();
+            res
+        })
+    });
+
+    postprocess(μ_prev, config, L2Squared, opA, b)
+}

mercurial