Tue, 31 Dec 2024 09:25:45 -0500
New version of sliding.
/*! Solver for the point source localisation problem using a simplified forward-backward splitting method. Instead of the $𝒟$-norm of `fb.rs`, this uses a standard Radon norm for the proximal map. */ use numeric_literals::replace_float_literals; use serde::{Serialize, Deserialize}; use colored::Colorize; use nalgebra::DVector; use alg_tools::iterate::{ AlgIteratorFactory, AlgIteratorIteration, AlgIterator }; use alg_tools::euclidean::Euclidean; use alg_tools::linops::Mapping; use alg_tools::sets::Cube; use alg_tools::loc::Loc; use alg_tools::bisection_tree::{ BTFN, Bounds, BTNodeLookup, BTNode, BTSearch, P2Minimise, SupportGenerator, LocalAnalysis, }; use alg_tools::mapping::RealMapping; use alg_tools::nalgebra_support::ToNalgebraRealField; use alg_tools::norms::L2; use crate::types::*; use crate::measures::{ RNDM, DiscreteMeasure, DeltaMeasure, Radon, }; use crate::measures::merging::{ SpikeMergingMethod, SpikeMerging, }; use crate::forward_model::ForwardModel; use crate::plot::{ SeqPlotter, Plotting, PlotLookup }; use crate::regularisation::RegTerm; use crate::dataterm::{ calculate_residual, L2Squared, DataTerm, }; use crate::fb::{ FBGenericConfig, postprocess, prune_with_stats }; /// Settings for [`pointsource_radon_fb_reg`]. #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] #[serde(default)] pub struct RadonFBConfig<F : Float> { /// Step length scaling pub τ0 : F, /// Generic parameters pub insertion : FBGenericConfig<F>, } #[replace_float_literals(F::cast_from(literal))] impl<F : Float> Default for RadonFBConfig<F> { fn default() -> Self { RadonFBConfig { τ0 : 0.99, insertion : Default::default() } } } #[replace_float_literals(F::cast_from(literal))] pub(crate) fn insert_and_reweigh< 'a, F, GA, BTA, S, Reg, I, const N : usize >( μ : &mut RNDM<F, N>, τv : &mut BTFN<F, GA, BTA, N>, μ_base : &mut RNDM<F, N>, //_ν_delta: Option<&RNDM<F, N>>, τ : F, ε : F, config : &FBGenericConfig<F>, reg : &Reg, _state : &AlgIteratorIteration<I>, stats : &mut IterInfo<F, N>, ) where F : Float + ToNalgebraRealField, GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, RNDM<F, N> : SpikeMerging<F>, Reg : RegTerm<F, N>, I : AlgIterator { 'i_and_w: for i in 0..=1 { // Optimise weights if μ.len() > 0 { // Form finite-dimensional subproblem. The subproblem references to the original μ^k // from the beginning of the iteration are all contained in the immutable c and g. // TODO: observe negation of -τv after switch from minus_τv: finite-dimensional // problems have not yet been updated to sign change. let g̃ = DVector::from_iterator(μ.len(), μ.iter_locations() .map(|ζ| - F::to_nalgebra_mixed(τv.apply(ζ)))); let mut x = μ.masses_dvector(); let y = μ_base.masses_dvector(); // Solve finite-dimensional subproblem. stats.inner_iters += reg.solve_findim_l1squared(&y, &g̃, τ, &mut x, ε, config); // Update masses of μ based on solution of finite-dimensional subproblem. μ.set_masses_dvector(&x); } if i>0 { // Simple debugging test to see if more inserts would be needed. Doesn't seem so. //let n = μ.dist_matching(μ_base); //println!("{:?}", reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n)); break 'i_and_w } // Calculate ‖μ - μ_base‖_ℳ let n = μ.dist_matching(μ_base); // Find a spike to insert, if needed. // This only check the overall tolerances, not tolerances on support of μ-μ_base or μ, // which are supposed to have been guaranteed by the finite-dimensional weight optimisation. match reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n) { None => { break 'i_and_w }, Some((ξ, _v_ξ, _in_bounds)) => { // Weight is found out by running the finite-dimensional optimisation algorithm // above *μ += DeltaMeasure { x : ξ, α : 0.0 }; *μ_base += DeltaMeasure { x : ξ, α : 0.0 }; stats.inserted += 1; } }; } } /// Iteratively solve the pointsource localisation problem using simplified forward-backward splitting. /// /// The settings in `config` have their [respective documentation][RadonFBConfig]. `opA` is the /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. /// Finally, the `iterator` is an outer loop verbosity and iteration count control /// as documented in [`alg_tools::iterate`]. /// /// For details on the mathematical formulation, see the [module level](self) documentation. /// /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of /// sums of simple functions usign bisection trees, and the related /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions /// active at a specific points, and to maximise their sums. Through the implementation of the /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. /// /// Returns the final iterate. #[replace_float_literals(F::cast_from(literal))] pub fn pointsource_radon_fb_reg< 'a, F, I, A, GA, BTA, S, Reg, const N : usize >( opA : &'a A, b : &A::Observable, reg : Reg, fbconfig : &RadonFBConfig<F>, iterator : I, mut _plotter : SeqPlotter<F, N>, ) -> RNDM<F, N> where F : Float + ToNalgebraRealField, I : AlgIteratorFactory<IterInfo<F, N>>, for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>>, BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, Cube<F, N>: P2Minimise<Loc<F, N>, F>, RNDM<F, N> : SpikeMerging<F>, Reg : RegTerm<F, N> { // Set up parameters let config = &fbconfig.insertion; // We need L such that the descent inequality F(ν) - F(μ) - ⟨F'(μ),ν-μ⟩ ≤ (L/2)‖ν-μ‖²_ℳ ∀ ν,μ // holds. Since the left hand side expands as (1/2)‖A(ν-μ)‖₂², this is to say, we need L such // that ‖Aμ‖₂² ≤ L ‖μ‖²_ℳ ∀ μ. Thus `opnorm_bound` gives the square root of L. let τ = fbconfig.τ0/opA.opnorm_bound(Radon, L2).powi(2); // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled // by τ compared to the conditional gradient approach. let tolerance = config.tolerance * τ * reg.tolerance_scaling(); let mut ε = tolerance.initial(); // Initialise iterates let mut μ = DiscreteMeasure::new(); let mut residual = -b; // Statistics let full_stats = |residual : &A::Observable, μ : &RNDM<F, N>, ε, stats| IterInfo { value : residual.norm2_squared_div2() + reg.apply(μ), n_spikes : μ.len(), ε, // postprocessing: config.postprocessing.then(|| μ.clone()), .. stats }; let mut stats = IterInfo::new(); // Run the algorithm for state in iterator.iter_init(|| full_stats(&residual, &μ, ε, stats.clone())) { // Calculate smooth part of surrogate model. let mut τv = opA.preadjoint().apply(residual * τ); // Save current base point let mut μ_base = μ.clone(); // Insert and reweigh insert_and_reweigh( &mut μ, &mut τv, &mut μ_base, //None, τ, ε, config, ®, &state, &mut stats ); // Prune and possibly merge spikes assert!(μ_base.len() <= μ.len()); if config.merge_now(&state) { stats.merged += μ.merge_spikes(config.merging, |μ_candidate| { // Important: μ_candidate's new points are afterwards, // and do not conflict with μ_base. // TODO: could simplify to requiring μ_base instead of μ_radon. // but may complicate with sliding base's exgtra points that need to be // after μ_candidate's extra points. // TODO: doesn't seem to work, maybe need to merge μ_base as well? // Although that doesn't seem to make sense. let μ_radon = μ_candidate.sub_matching(&μ_base); reg.verify_merge_candidate_radonsq(&mut τv, μ_candidate, τ, ε, &config, &μ_radon) //let n = μ_candidate.dist_matching(μ_base); //reg.find_tolerance_violation_slack(τv, τ, ε, false, config, n).is_none() }); } stats.pruned += prune_with_stats(&mut μ); // Update residual residual = calculate_residual(&μ, opA, b); let iter = state.iteration(); stats.this_iters += 1; // Give statistics if needed state.if_verbose(|| { full_stats(&residual, &μ, ε, std::mem::replace(&mut stats, IterInfo::new())) }); // Update main tolerance for next iteration ε = tolerance.update(ε, iter); } postprocess(μ, config, L2Squared, opA, b) } /// Iteratively solve the pointsource localisation problem using simplified inertial forward-backward splitting. /// /// The settings in `config` have their [respective documentation][RadonFBConfig]. `opA` is the /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. /// Finally, the `iterator` is an outer loop verbosity and iteration count control /// as documented in [`alg_tools::iterate`]. /// /// For details on the mathematical formulation, see the [module level](self) documentation. /// /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of /// sums of simple functions usign bisection trees, and the related /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions /// active at a specific points, and to maximise their sums. Through the implementation of the /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. /// /// Returns the final iterate. #[replace_float_literals(F::cast_from(literal))] pub fn pointsource_radon_fista_reg< 'a, F, I, A, GA, BTA, S, Reg, const N : usize >( opA : &'a A, b : &A::Observable, reg : Reg, fbconfig : &RadonFBConfig<F>, iterator : I, mut plotter : SeqPlotter<F, N>, ) -> RNDM<F, N> where F : Float + ToNalgebraRealField, I : AlgIteratorFactory<IterInfo<F, N>>, for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>>, BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, Cube<F, N>: P2Minimise<Loc<F, N>, F>, PlotLookup : Plotting<N>, RNDM<F, N> : SpikeMerging<F>, Reg : RegTerm<F, N> { // Set up parameters let config = &fbconfig.insertion; // We need L such that the descent inequality F(ν) - F(μ) - ⟨F'(μ),ν-μ⟩ ≤ (L/2)‖ν-μ‖²_ℳ ∀ ν,μ // holds. Since the left hand side expands as (1/2)‖A(ν-μ)‖₂², this is to say, we need L such // that ‖Aμ‖₂² ≤ L ‖μ‖²_ℳ ∀ μ. Thus `opnorm_bound` gives the square root of L. let τ = fbconfig.τ0/opA.opnorm_bound(Radon, L2).powi(2); let mut λ = 1.0; // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled // by τ compared to the conditional gradient approach. let tolerance = config.tolerance * τ * reg.tolerance_scaling(); let mut ε = tolerance.initial(); // Initialise iterates let mut μ = DiscreteMeasure::new(); let mut μ_prev = DiscreteMeasure::new(); let mut residual = -b; let mut warned_merging = false; // Statistics let full_stats = |ν : &RNDM<F, N>, ε, stats| IterInfo { value : L2Squared.calculate_fit_op(ν, opA, b) + reg.apply(ν), n_spikes : ν.len(), ε, // postprocessing: config.postprocessing.then(|| ν.clone()), .. stats }; let mut stats = IterInfo::new(); // Run the algorithm for state in iterator.iter_init(|| full_stats(&μ, ε, stats.clone())) { // Calculate smooth part of surrogate model. let mut τv = opA.preadjoint().apply(residual * τ); // Save current base point let mut μ_base = μ.clone(); // Insert new spikes and reweigh insert_and_reweigh( &mut μ, &mut τv, &mut μ_base, //None, τ, ε, config, ®, &state, &mut stats ); // (Do not) merge spikes. if config.merge_now(&state) { match config.merging { SpikeMergingMethod::None => { }, _ => if !warned_merging { let err = format!("Merging not supported for μFISTA"); println!("{}", err.red()); warned_merging = true; } } } // Update inertial prameters let λ_prev = λ; λ = 2.0 * λ_prev / ( λ_prev + (4.0 + λ_prev * λ_prev).sqrt() ); let θ = λ / λ_prev - λ; // Perform inertial update on μ. // This computes μ ← (1 + θ) * μ - θ * μ_prev, pruning spikes where both μ // and μ_prev have zero weight. Since both have weights from the finite-dimensional // subproblem with a proximal projection step, this is likely to happen when the // spike is not needed. A copy of the pruned μ without artithmetic performed is // stored in μ_prev. let n_before_prune = μ.len(); μ.pruning_sub(1.0 + θ, θ, &mut μ_prev); debug_assert!(μ.len() <= n_before_prune); stats.pruned += n_before_prune - μ.len(); // Update residual residual = calculate_residual(&μ, opA, b); let iter = state.iteration(); stats.this_iters += 1; // Give statistics if needed state.if_verbose(|| { plotter.plot_spikes(iter, Option::<&S>::None, Some(&τv), &μ_prev); full_stats(&μ_prev, ε, std::mem::replace(&mut stats, IterInfo::new())) }); // Update main tolerance for next iteration ε = tolerance.update(ε, iter); } postprocess(μ_prev, config, L2Squared, opA, b) }