Thu, 29 Aug 2024 00:00:00 -0500
Radon FB + sliding improvements
| 34 | 1 | /*! | 
| 2 | Solver for the point source localisation problem using a simplified forward-backward splitting method. | |
| 3 | ||
| 4 | Instead of the $𝒟$-norm of `fb.rs`, this uses a standard Radon norm for the proximal map. | |
| 5 | */ | |
| 6 | ||
| 7 | use numeric_literals::replace_float_literals; | |
| 8 | use serde::{Serialize, Deserialize}; | |
| 9 | use colored::Colorize; | |
| 10 | use nalgebra::DVector; | |
| 11 | ||
| 12 | use alg_tools::iterate::{ | |
| 13 | AlgIteratorFactory, | |
| 14 | AlgIteratorState, | |
| 15 | }; | |
| 16 | use alg_tools::euclidean::Euclidean; | |
| 17 | use alg_tools::linops::Apply; | |
| 18 | use alg_tools::sets::Cube; | |
| 19 | use alg_tools::loc::Loc; | |
| 20 | use alg_tools::bisection_tree::{ | |
| 21 | BTFN, | |
| 22 | Bounds, | |
| 23 | BTNodeLookup, | |
| 24 | BTNode, | |
| 25 | BTSearch, | |
| 26 | P2Minimise, | |
| 27 | SupportGenerator, | |
| 28 | LocalAnalysis, | |
| 29 | }; | |
| 30 | use alg_tools::mapping::RealMapping; | |
| 31 | use alg_tools::nalgebra_support::ToNalgebraRealField; | |
| 32 | ||
| 33 | use crate::types::*; | |
| 34 | use crate::measures::{ | |
| 35 | DiscreteMeasure, | |
| 36 | DeltaMeasure, | |
| 37 | }; | |
| 38 | use crate::measures::merging::{ | |
| 39 | SpikeMergingMethod, | |
| 40 | SpikeMerging, | |
| 41 | }; | |
| 42 | use crate::forward_model::ForwardModel; | |
| 43 | use crate::plot::{ | |
| 44 | SeqPlotter, | |
| 45 | Plotting, | |
| 46 | PlotLookup | |
| 47 | }; | |
| 48 | use crate::regularisation::RegTerm; | |
| 49 | use crate::dataterm::{ | |
| 50 | calculate_residual, | |
| 51 | L2Squared, | |
| 52 | DataTerm, | |
| 53 | }; | |
| 54 | ||
| 55 | use crate::fb::{ | |
| 56 | FBGenericConfig, | |
| 57 | postprocess | |
| 58 | }; | |
| 59 | ||
| 60 | /// Settings for [`pointsource_fb_reg`]. | |
| 61 | #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] | |
| 62 | #[serde(default)] | |
| 63 | pub struct RadonFBConfig<F : Float> { | |
| 64 | /// Step length scaling | |
| 65 | pub τ0 : F, | |
| 66 | /// Generic parameters | |
| 67 | pub insertion : FBGenericConfig<F>, | |
| 68 | } | |
| 69 | ||
| 70 | #[replace_float_literals(F::cast_from(literal))] | |
| 71 | impl<F : Float> Default for RadonFBConfig<F> { | |
| 72 | fn default() -> Self { | |
| 73 | RadonFBConfig { | |
| 74 | τ0 : 0.99, | |
| 75 | insertion : Default::default() | |
| 76 | } | |
| 77 | } | |
| 78 | } | |
| 79 | ||
| 80 | #[replace_float_literals(F::cast_from(literal))] | |
| 81 | pub(crate) fn insert_and_reweigh< | |
| 82 | 'a, F, GA, BTA, S, Reg, State, const N : usize | |
| 83 | >( | |
| 84 | μ : &mut DiscreteMeasure<Loc<F, N>, F>, | |
| 85 | minus_τv : &mut BTFN<F, GA, BTA, N>, | |
| 86 | μ_base : &mut DiscreteMeasure<Loc<F, N>, F>, | |
| 87 | _ν_delta: Option<&DiscreteMeasure<Loc<F, N>, F>>, | |
| 88 | τ : F, | |
| 89 | ε : F, | |
| 90 | config : &FBGenericConfig<F>, | |
| 91 | reg : &Reg, | |
| 92 | _state : &State, | |
| 93 | stats : &mut IterInfo<F, N>, | |
| 94 | ) | |
| 95 | where F : Float + ToNalgebraRealField, | |
| 96 | GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, | |
| 97 | BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, | |
| 98 | S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
| 99 | BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, | |
| 100 | DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, | |
| 101 | Reg : RegTerm<F, N>, | |
| 102 | State : AlgIteratorState { | |
| 103 | ||
| 104 | 'i_and_w: for i in 0..=1 { | |
| 105 | // Optimise weights | |
| 106 | if μ.len() > 0 { | |
| 107 | // Form finite-dimensional subproblem. The subproblem references to the original μ^k | |
| 108 | // from the beginning of the iteration are all contained in the immutable c and g. | |
| 109 | let g̃ = DVector::from_iterator(μ.len(), | |
| 110 | μ.iter_locations() | |
| 111 | .map(|ζ| F::to_nalgebra_mixed(minus_τv.apply(ζ)))); | |
| 112 | let mut x = μ.masses_dvector(); | |
| 113 | let y = μ_base.masses_dvector(); | |
| 114 | ||
| 115 | // Solve finite-dimensional subproblem. | |
| 116 | stats.inner_iters += reg.solve_findim_l1squared(&y, &g̃, τ, &mut x, ε, config); | |
| 117 | ||
| 118 | // Update masses of μ based on solution of finite-dimensional subproblem. | |
| 119 | μ.set_masses_dvector(&x); | |
| 120 | } | |
| 121 | ||
| 122 | if i>0 { | |
| 123 | // Simple debugging test to see if more inserts would be needed. Doesn't seem so. | |
| 124 | //let n = μ.dist_matching(μ_base); | |
| 125 | //println!("{:?}", reg.find_tolerance_violation_slack(minus_τv, τ, ε, false, config, n)); | |
| 126 | break 'i_and_w | |
| 127 | } | |
| 128 | ||
| 129 | // Calculate ‖μ - μ_base‖_ℳ | |
| 130 | let n = μ.dist_matching(μ_base); | |
| 131 | ||
| 132 | // Find a spike to insert, if needed. | |
| 133 | // This only check the overall tolerances, not tolerances on support of μ-μ_base or μ, | |
| 134 | // which are supposed to have been guaranteed by the finite-dimensional weight optimisation. | |
| 135 | match reg.find_tolerance_violation_slack(minus_τv, τ, ε, false, config, n) { | |
| 136 | None => { break 'i_and_w }, | |
| 137 | Some((ξ, _v_ξ, _in_bounds)) => { | |
| 138 | // Weight is found out by running the finite-dimensional optimisation algorithm | |
| 139 | // above | |
| 140 | *μ += DeltaMeasure { x : ξ, α : 0.0 }; | |
| 141 | *μ_base += DeltaMeasure { x : ξ, α : 0.0 }; | |
| 142 | } | |
| 143 | }; | |
| 144 | } | |
| 145 | } | |
| 146 | ||
| 147 | #[replace_float_literals(F::cast_from(literal))] | |
| 148 | pub(crate) fn prune_and_maybe_simple_merge< | |
| 149 | 'a, F, GA, BTA, S, Reg, State, const N : usize | |
| 150 | >( | |
| 151 | μ : &mut DiscreteMeasure<Loc<F, N>, F>, | |
| 152 | minus_τv : &mut BTFN<F, GA, BTA, N>, | |
| 153 | μ_base : &DiscreteMeasure<Loc<F, N>, F>, | |
| 154 | τ : F, | |
| 155 | ε : F, | |
| 156 | config : &FBGenericConfig<F>, | |
| 157 | reg : &Reg, | |
| 158 | state : &State, | |
| 159 | stats : &mut IterInfo<F, N>, | |
| 160 | ) | |
| 161 | where F : Float + ToNalgebraRealField, | |
| 162 | GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, | |
| 163 | BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, | |
| 164 | S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
| 165 | BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, | |
| 166 | DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, | |
| 167 | Reg : RegTerm<F, N>, | |
| 168 | State : AlgIteratorState { | |
| 169 | ||
| 170 | assert!(μ_base.len() <= μ.len()); | |
| 171 | ||
| 172 | if state.iteration() % config.merge_every == 0 { | |
| 173 | stats.merged += μ.merge_spikes(config.merging, |μ_candidate| { | |
| 174 | // Important: μ_candidate's new points are afterwards, | |
| 175 | // and do not conflict with μ_base. | |
| 176 | // TODO: could simplify to requiring μ_base instead of μ_radon. | |
| 177 | // but may complicate with sliding base's exgtra points that need to be | |
| 178 | // after μ_candidate's extra points. | |
| 179 | // TODO: doesn't seem to work, maybe need to merge μ_base as well? | |
| 180 | // Although that doesn't seem to make sense. | |
| 181 | let μ_radon = μ_candidate.sub_matching(μ_base); | |
| 182 | reg.verify_merge_candidate_radonsq(minus_τv, μ_candidate, τ, ε, &config, &μ_radon) | |
| 183 | //let n = μ_candidate.dist_matching(μ_base); | |
| 184 | //reg.find_tolerance_violation_slack(minus_τv, τ, ε, false, config, n).is_none() | |
| 185 | }); | |
| 186 | } | |
| 187 | ||
| 188 | let n_before_prune = μ.len(); | |
| 189 | μ.prune(); | |
| 190 | debug_assert!(μ.len() <= n_before_prune); | |
| 191 | stats.pruned += n_before_prune - μ.len(); | |
| 192 | } | |
| 193 | ||
| 194 | ||
| 195 | /// Iteratively solve the pointsource localisation problem using simplified forward-backward splitting. | |
| 196 | /// | |
| 197 | /// The settings in `config` have their [respective documentation](FBConfig). `opA` is the | |
| 198 | /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. | |
| 199 | /// Finally, the `iterator` is an outer loop verbosity and iteration count control | |
| 200 | /// as documented in [`alg_tools::iterate`]. | |
| 201 | /// | |
| 202 | /// For details on the mathematical formulation, see the [module level](self) documentation. | |
| 203 | /// | |
| 204 | /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of | |
| 205 | /// sums of simple functions usign bisection trees, and the related | |
| 206 | /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions | |
| 207 | /// active at a specific points, and to maximise their sums. Through the implementation of the | |
| 208 | /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features | |
| 209 | /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. | |
| 210 | /// | |
| 211 | /// Returns the final iterate. | |
| 212 | #[replace_float_literals(F::cast_from(literal))] | |
| 213 | pub fn pointsource_radon_fb_reg< | |
| 214 | 'a, F, I, A, GA, BTA, S, Reg, const N : usize | |
| 215 | >( | |
| 216 | opA : &'a A, | |
| 217 | b : &A::Observable, | |
| 218 | reg : Reg, | |
| 219 | fbconfig : &RadonFBConfig<F>, | |
| 220 | iterator : I, | |
| 221 | mut _plotter : SeqPlotter<F, N>, | |
| 222 | ) -> DiscreteMeasure<Loc<F, N>, F> | |
| 223 | where F : Float + ToNalgebraRealField, | |
| 224 | I : AlgIteratorFactory<IterInfo<F, N>>, | |
| 225 | for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, | |
| 226 | //+ std::ops::Mul<F, Output=A::Observable>, <-- FIXME: compiler overflow | |
| 227 | A::Observable : std::ops::MulAssign<F>, | |
| 228 | GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, | |
| 229 | A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>>, | |
| 230 | BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, | |
| 231 | S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
| 232 | BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, | |
| 233 | Cube<F, N>: P2Minimise<Loc<F, N>, F>, | |
| 234 | PlotLookup : Plotting<N>, | |
| 235 | DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, | |
| 236 | Reg : RegTerm<F, N> { | |
| 237 | ||
| 238 | // Set up parameters | |
| 239 | let config = &fbconfig.insertion; | |
| 240 | // We need L such that the descent inequality F(ν) - F(μ) - ⟨F'(μ),ν-μ⟩ ≤ (L/2)‖ν-μ‖²_ℳ ∀ ν,μ | |
| 241 | // holds. Since the left hand side expands as (1/2)‖A(ν-μ)‖₂², this is to say, we need L such | |
| 242 | // that ‖Aμ‖₂² ≤ L ‖μ‖²_ℳ ∀ μ. Thus `opnorm_bound` gives the square root of L. | |
| 243 | let τ = fbconfig.τ0/opA.opnorm_bound().powi(2); | |
| 244 | // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled | |
| 245 | // by τ compared to the conditional gradient approach. | |
| 246 | let tolerance = config.tolerance * τ * reg.tolerance_scaling(); | |
| 247 | let mut ε = tolerance.initial(); | |
| 248 | ||
| 249 | // Initialise iterates | |
| 250 | let mut μ = DiscreteMeasure::new(); | |
| 251 | let mut residual = -b; | |
| 252 | let mut stats = IterInfo::new(); | |
| 253 | ||
| 254 | // Run the algorithm | |
| 255 | iterator.iterate(|state| { | |
| 256 | // Calculate smooth part of surrogate model. | |
| 257 | // Using `std::mem::replace` here is not ideal, and expects that `empty_observable` | |
| 258 | // has no significant overhead. For some reosn Rust doesn't allow us simply moving | |
| 259 | // the residual and replacing it below before the end of this closure. | |
| 260 | residual *= -τ; | |
| 261 | let r = std::mem::replace(&mut residual, opA.empty_observable()); | |
| 262 | let mut minus_τv = opA.preadjoint().apply(r); | |
| 263 | ||
| 264 | // Save current base point | |
| 265 | let mut μ_base = μ.clone(); | |
| 266 | ||
| 267 | // Insert and reweigh | |
| 268 | insert_and_reweigh( | |
| 269 | &mut μ, &mut minus_τv, &mut μ_base, None, | |
| 270 | τ, ε, | |
| 271 | config, ®, state, &mut stats | |
| 272 | ); | |
| 273 | ||
| 274 | // Prune and possibly merge spikes | |
| 275 | prune_and_maybe_simple_merge( | |
| 276 | &mut μ, &mut minus_τv, &μ_base, | |
| 277 | τ, ε, | |
| 278 | config, ®, state, &mut stats | |
| 279 | ); | |
| 280 | ||
| 281 | // Update residual | |
| 282 | residual = calculate_residual(&μ, opA, b); | |
| 283 | ||
| 284 | // Update main tolerance for next iteration | |
| 285 | let ε_prev = ε; | |
| 286 | ε = tolerance.update(ε, state.iteration()); | |
| 287 | stats.this_iters += 1; | |
| 288 | ||
| 289 | // Give function value if needed | |
| 290 | state.if_verbose(|| { | |
| 291 | // Plot if so requested | |
| 292 | // plotter.plot_spikes( | |
| 293 | // format!("iter {} end;", state.iteration()), &d, | |
| 294 | // "start".to_string(), Some(&minus_τv), | |
| 295 | // reg.target_bounds(τ, ε_prev), &μ, | |
| 296 | // ); | |
| 297 | // Calculate mean inner iterations and reset relevant counters. | |
| 298 | // Return the statistics | |
| 299 | let res = IterInfo { | |
| 300 | value : residual.norm2_squared_div2() + reg.apply(&μ), | |
| 301 | n_spikes : μ.len(), | |
| 302 | ε : ε_prev, | |
| 303 | postprocessing: config.postprocessing.then(|| μ.clone()), | |
| 304 | .. stats | |
| 305 | }; | |
| 306 | stats = IterInfo::new(); | |
| 307 | res | |
| 308 | }) | |
| 309 | }); | |
| 310 | ||
| 311 | postprocess(μ, config, L2Squared, opA, b) | |
| 312 | } | |
| 313 | ||
| 314 | /// Iteratively solve the pointsource localisation problem using simplified inertial forward-backward splitting. | |
| 315 | /// | |
| 316 | /// The settings in `config` have their [respective documentation](FBConfig). `opA` is the | |
| 317 | /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. | |
| 318 | /// Finally, the `iterator` is an outer loop verbosity and iteration count control | |
| 319 | /// as documented in [`alg_tools::iterate`]. | |
| 320 | /// | |
| 321 | /// For details on the mathematical formulation, see the [module level](self) documentation. | |
| 322 | /// | |
| 323 | /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of | |
| 324 | /// sums of simple functions usign bisection trees, and the related | |
| 325 | /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions | |
| 326 | /// active at a specific points, and to maximise their sums. Through the implementation of the | |
| 327 | /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features | |
| 328 | /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. | |
| 329 | /// | |
| 330 | /// Returns the final iterate. | |
| 331 | #[replace_float_literals(F::cast_from(literal))] | |
| 332 | pub fn pointsource_radon_fista_reg< | |
| 333 | 'a, F, I, A, GA, BTA, S, Reg, const N : usize | |
| 334 | >( | |
| 335 | opA : &'a A, | |
| 336 | b : &A::Observable, | |
| 337 | reg : Reg, | |
| 338 | fbconfig : &RadonFBConfig<F>, | |
| 339 | iterator : I, | |
| 340 | mut _plotter : SeqPlotter<F, N>, | |
| 341 | ) -> DiscreteMeasure<Loc<F, N>, F> | |
| 342 | where F : Float + ToNalgebraRealField, | |
| 343 | I : AlgIteratorFactory<IterInfo<F, N>>, | |
| 344 | for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, | |
| 345 | //+ std::ops::Mul<F, Output=A::Observable>, <-- FIXME: compiler overflow | |
| 346 | A::Observable : std::ops::MulAssign<F>, | |
| 347 | GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, | |
| 348 | A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>>, | |
| 349 | BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, | |
| 350 | S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
| 351 | BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, | |
| 352 | Cube<F, N>: P2Minimise<Loc<F, N>, F>, | |
| 353 | PlotLookup : Plotting<N>, | |
| 354 | DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, | |
| 355 | Reg : RegTerm<F, N> { | |
| 356 | ||
| 357 | // Set up parameters | |
| 358 | let config = &fbconfig.insertion; | |
| 359 | // We need L such that the descent inequality F(ν) - F(μ) - ⟨F'(μ),ν-μ⟩ ≤ (L/2)‖ν-μ‖²_ℳ ∀ ν,μ | |
| 360 | // holds. Since the left hand side expands as (1/2)‖A(ν-μ)‖₂², this is to say, we need L such | |
| 361 | // that ‖Aμ‖₂² ≤ L ‖μ‖²_ℳ ∀ μ. Thus `opnorm_bound` gives the square root of L. | |
| 362 | let τ = fbconfig.τ0/opA.opnorm_bound().powi(2); | |
| 363 | let mut λ = 1.0; | |
| 364 | // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled | |
| 365 | // by τ compared to the conditional gradient approach. | |
| 366 | let tolerance = config.tolerance * τ * reg.tolerance_scaling(); | |
| 367 | let mut ε = tolerance.initial(); | |
| 368 | ||
| 369 | // Initialise iterates | |
| 370 | let mut μ = DiscreteMeasure::new(); | |
| 371 | let mut μ_prev = DiscreteMeasure::new(); | |
| 372 | let mut residual = -b; | |
| 373 | let mut stats = IterInfo::new(); | |
| 374 | let mut warned_merging = false; | |
| 375 | ||
| 376 | // Run the algorithm | |
| 377 | iterator.iterate(|state| { | |
| 378 | // Calculate smooth part of surrogate model. | |
| 379 | // Using `std::mem::replace` here is not ideal, and expects that `empty_observable` | |
| 380 | // has no significant overhead. For some reosn Rust doesn't allow us simply moving | |
| 381 | // the residual and replacing it below before the end of this closure. | |
| 382 | residual *= -τ; | |
| 383 | let r = std::mem::replace(&mut residual, opA.empty_observable()); | |
| 384 | let mut minus_τv = opA.preadjoint().apply(r); | |
| 385 | ||
| 386 | // Save current base point | |
| 387 | let mut μ_base = μ.clone(); | |
| 388 | ||
| 389 | // Insert new spikes and reweigh | |
| 390 | insert_and_reweigh( | |
| 391 | &mut μ, &mut minus_τv, &mut μ_base, None, | |
| 392 | τ, ε, | |
| 393 | config, ®, state, &mut stats | |
| 394 | ); | |
| 395 | ||
| 396 | // (Do not) merge spikes. | |
| 397 | if state.iteration() % config.merge_every == 0 { | |
| 398 | match config.merging { | |
| 399 | SpikeMergingMethod::None => { }, | |
| 400 | _ => if !warned_merging { | |
| 401 | let err = format!("Merging not supported for μFISTA"); | |
| 402 | println!("{}", err.red()); | |
| 403 | warned_merging = true; | |
| 404 | } | |
| 405 | } | |
| 406 | } | |
| 407 | ||
| 408 | // Update inertial prameters | |
| 409 | let λ_prev = λ; | |
| 410 | λ = 2.0 * λ_prev / ( λ_prev + (4.0 + λ_prev * λ_prev).sqrt() ); | |
| 411 | let θ = λ / λ_prev - λ; | |
| 412 | ||
| 413 | // Perform inertial update on μ. | |
| 414 | // This computes μ ← (1 + θ) * μ - θ * μ_prev, pruning spikes where both μ | |
| 415 | // and μ_prev have zero weight. Since both have weights from the finite-dimensional | |
| 416 | // subproblem with a proximal projection step, this is likely to happen when the | |
| 417 | // spike is not needed. A copy of the pruned μ without artithmetic performed is | |
| 418 | // stored in μ_prev. | |
| 419 | let n_before_prune = μ.len(); | |
| 420 | μ.pruning_sub(1.0 + θ, θ, &mut μ_prev); | |
| 421 | debug_assert!(μ.len() <= n_before_prune); | |
| 422 | stats.pruned += n_before_prune - μ.len(); | |
| 423 | ||
| 424 | // Update residual | |
| 425 | residual = calculate_residual(&μ, opA, b); | |
| 426 | ||
| 427 | // Update main tolerance for next iteration | |
| 428 | let ε_prev = ε; | |
| 429 | ε = tolerance.update(ε, state.iteration()); | |
| 430 | stats.this_iters += 1; | |
| 431 | ||
| 432 | // Give function value if needed | |
| 433 | state.if_verbose(|| { | |
| 434 | // Plot if so requested | |
| 435 | // plotter.plot_spikes( | |
| 436 | // format!("iter {} end;", state.iteration()), &d, | |
| 437 | // "start".to_string(), Some(&minus_τv), | |
| 438 | // reg.target_bounds(τ, ε_prev), &μ_prev, | |
| 439 | // ); | |
| 440 | // Calculate mean inner iterations and reset relevant counters. | |
| 441 | // Return the statistics | |
| 442 | let res = IterInfo { | |
| 443 | value : L2Squared.calculate_fit_op(&μ_prev, opA, b) + reg.apply(&μ_prev), | |
| 444 | n_spikes : μ_prev.len(), | |
| 445 | ε : ε_prev, | |
| 446 | postprocessing: config.postprocessing.then(|| μ_prev.clone()), | |
| 447 | .. stats | |
| 448 | }; | |
| 449 | stats = IterInfo::new(); | |
| 450 | res | |
| 451 | }) | |
| 452 | }); | |
| 453 | ||
| 454 | postprocess(μ_prev, config, L2Squared, opA, b) | |
| 455 | } |