src/kernels/gaussian.rs

Mon, 06 Jan 2025 11:32:57 -0500

author
Tuomo Valkonen <tuomov@iki.fi>
date
Mon, 06 Jan 2025 11:32:57 -0500
branch
dev
changeset 36
fb911f72e698
parent 35
b087e3eab191
child 38
0f59c0d02e13
permissions
-rw-r--r--

Factor fix

0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
1 //! Implementation of the gaussian kernel.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
2
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
3 use float_extras::f64::erf;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
4 use numeric_literals::replace_float_literals;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
5 use serde::Serialize;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
6 use alg_tools::types::*;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
7 use alg_tools::euclidean::Euclidean;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
8 use alg_tools::norms::*;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
9 use alg_tools::loc::Loc;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
10 use alg_tools::sets::Cube;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
11 use alg_tools::bisection_tree::{
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
12 Support,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
13 Constant,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
14 Bounds,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
15 LocalAnalysis,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
16 GlobalAnalysis,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
17 Weighted,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
18 Bounded,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
19 };
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
20 use alg_tools::mapping::{
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
21 Mapping,
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
22 Instance,
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
23 Differential,
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
24 DifferentiableImpl,
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
25 };
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
26 use alg_tools::maputil::array_init;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
27
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
28 use crate::types::*;
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
29 use crate::fourier::Fourier;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
30 use super::base::*;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
31 use super::ball_indicator::CubeIndicator;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
32
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
33 /// Storage presentation of the the anisotropic gaussian kernel of `variance` $σ^2$.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
34 ///
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
35 /// This is the function $f(x) = C e^{-\\|x\\|\_2^2/(2σ^2)}$ for $x ∈ ℝ^N$
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
36 /// with $C=1/(2πσ^2)^{N/2}$.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
37 #[derive(Copy,Clone,Debug,Serialize,Eq)]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
38 pub struct Gaussian<S : Constant, const N : usize> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
39 /// The variance $σ^2$.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
40 pub variance : S,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
41 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
42
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
43 impl<S1, S2, const N : usize> PartialEq<Gaussian<S2, N>> for Gaussian<S1, N>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
44 where S1 : Constant,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
45 S2 : Constant<Type=S1::Type> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
46 fn eq(&self, other : &Gaussian<S2, N>) -> bool {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
47 self.variance.value() == other.variance.value()
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
48 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
49 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
50
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
51 impl<S1, S2, const N : usize> PartialOrd<Gaussian<S2, N>> for Gaussian<S1, N>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
52 where S1 : Constant,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
53 S2 : Constant<Type=S1::Type> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
54
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
55 fn partial_cmp(&self, other : &Gaussian<S2, N>) -> Option<std::cmp::Ordering> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
56 // A gaussian is ≤ another gaussian if the Fourier transforms satisfy the
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
57 // corresponding inequality. That in turns holds if and only if the variances
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
58 // satisfy the opposite inequality.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
59 let σ1sq = self.variance.value();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
60 let σ2sq = other.variance.value();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
61 σ2sq.partial_cmp(&σ1sq)
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
62 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
63 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
64
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
65
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
66 #[replace_float_literals(S::Type::cast_from(literal))]
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
67 impl<'a, S, const N : usize> Mapping<Loc<S::Type, N>> for Gaussian<S, N>
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
68 where
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
69 S : Constant
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
70 {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
71 type Codomain = S::Type;
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
72
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
73 // This is not normalised to neither to have value 1 at zero or integral 1
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
74 // (unless the cut-off ε=0).
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
75 #[inline]
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
76 fn apply<I : Instance<Loc<S::Type, N>>>(&self, x : I) -> Self::Codomain {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
77 let d_squared = x.eval(|x| x.norm2_squared());
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
78 let σ2 = self.variance.value();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
79 let scale = self.scale();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
80 (-d_squared / (2.0 * σ2)).exp() / scale
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
81 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
82 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
83
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
84 #[replace_float_literals(S::Type::cast_from(literal))]
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
85 impl<'a, S, const N : usize> DifferentiableImpl<Loc<S::Type, N>> for Gaussian<S, N>
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
86 where S : Constant {
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
87 type Derivative = Loc<S::Type, N>;
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
88
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
89 #[inline]
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
90 fn differential_impl<I : Instance<Loc<S::Type, N>>>(&self, x0 : I) -> Self::Derivative {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
91 let x = x0.cow();
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
92 let f = -self.apply(&*x) / self.variance.value();
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
93 *x * f
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
94 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
95 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
96
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
97
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
98 // To calculate the the Lipschitz factors, we consider
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
99 // f(t) = e^{-t²/2}
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
100 // f'(t) = -t f(t) which has max at t=1 by f''(t)=0
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
101 // f''(t) = (t²-1)f(t) which has max at t=√3 by f'''(t)=0
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
102 // f'''(t) = -(t³-3t)
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
103 // So f has the Lipschitz factor L=f'(1), and f' has the Lipschitz factor L'=f''(√3).
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
104 //
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
105 // Now g(x) = Cf(‖x‖/σ) for a scaling factor C is the Gaussian.
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
106 // Thus ‖g(x)-g(y)‖ = C‖f(‖x‖/σ)-f(‖y‖/σ)‖ ≤ (C/σ)L‖x-y‖,
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
107 // so g has the Lipschitz factor (C/σ)f'(1) = (C/σ)exp(-0.5).
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
108 //
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
109 // Also ∇g(x)= Cx/(σ‖x‖)f'(‖x‖/σ) (*)
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
110 // = -(C/σ²)xf(‖x‖/σ)
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
111 // = -C/σ (x/σ) f(‖x/σ‖)
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
112 // ∇²g(x) = -(C/σ)[Id/σ f(‖x‖/σ) + x ⊗ x/(σ²‖x‖) f'(‖x‖/σ)]
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
113 // = (C/σ²)[-Id + x ⊗ x/σ²]f(‖x‖/σ).
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
114 // Thus ‖∇²g(x)‖ = (C/σ²)‖-Id + x ⊗ x/σ²‖f(‖x‖/σ), where
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
115 // ‖-Id + x ⊗ x/σ²‖ = ‖[-Id + x ⊗ x/σ²](x/‖x‖)‖ = |-1 + ‖x²/σ^2‖|.
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
116 // This means that ‖∇²g(x)‖ = (C/σ²)|f''(‖x‖/σ)|, which is maximised with ‖x‖/σ=√3.
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
117 // Hence the Lipschitz factor of ∇g is (C/σ²)f''(√3) = (C/σ²)2e^{-3/2}.
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
118
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
119 #[replace_float_literals(S::Type::cast_from(literal))]
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
120 impl<S, const N : usize> Lipschitz<L2> for Gaussian<S, N>
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
121 where S : Constant {
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
122 type FloatType = S::Type;
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
123 fn lipschitz_factor(&self, L2 : L2) -> Option<Self::FloatType> {
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
124 Some((-0.5).exp() / (self.scale() * self.variance.value().sqrt()))
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
125 }
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
126 }
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
127
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
128
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
129 #[replace_float_literals(S::Type::cast_from(literal))]
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
130 impl<'a, S : Constant, const N : usize> Lipschitz<L2>
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
131 for Differential<'a, Loc<S::Type, N>, Gaussian<S, N>> {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
132 type FloatType = S::Type;
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
133
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
134 fn lipschitz_factor(&self, _l2 : L2) -> Option<S::Type> {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
135 let g = self.base_fn();
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
136 let σ2 = g.variance.value();
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
137 let scale = g.scale();
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
138 Some(2.0*(-3.0/2.0).exp()/(σ2*scale))
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
139 }
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
140 }
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
141
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
142 // From above, norm bounds on the differnential can be calculated as achieved
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
143 // for f' at t=1, i.e., the bound is |f'(1)|.
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
144 // For g then |C/σ f'(1)|.
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
145 // It follows that the norm bounds on the differential are just the Lipschitz
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
146 // factors of the undifferentiated function, given how the latter is calculed above.
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
147
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
148 #[replace_float_literals(S::Type::cast_from(literal))]
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
149 impl<'b, S : Constant, const N : usize> NormBounded<L2>
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
150 for Differential<'b, Loc<S::Type, N>, Gaussian<S, N>> {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
151 type FloatType = S::Type;
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
152
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
153 fn norm_bound(&self, _l2 : L2) -> S::Type {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
154 self.base_fn().lipschitz_factor(L2).unwrap()
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
155 }
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
156 }
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
157
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
158 #[replace_float_literals(S::Type::cast_from(literal))]
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
159 impl<'b, 'a, S : Constant, const N : usize> NormBounded<L2>
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
160 for Differential<'b, Loc<S::Type, N>, &'a Gaussian<S, N>> {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
161 type FloatType = S::Type;
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
162
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
163 fn norm_bound(&self, _l2 : L2) -> S::Type {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
164 self.base_fn().lipschitz_factor(L2).unwrap()
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
165 }
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
166 }
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
167
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
168
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
169 #[replace_float_literals(S::Type::cast_from(literal))]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
170 impl<'a, S, const N : usize> Gaussian<S, N>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
171 where S : Constant {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
172
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
173 /// Returns the (reciprocal) scaling constant $1/C=(2πσ^2)^{N/2}$.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
174 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
175 pub fn scale(&self) -> S::Type {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
176 let π = S::Type::PI;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
177 let σ2 = self.variance.value();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
178 (2.0*π*σ2).powi(N as i32).sqrt()
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
179 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
180 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
181
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
182 impl<'a, S, const N : usize> Support<S::Type, N> for Gaussian<S, N>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
183 where S : Constant {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
184 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
185 fn support_hint(&self) -> Cube<S::Type,N> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
186 array_init(|| [S::Type::NEG_INFINITY, S::Type::INFINITY]).into()
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
187 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
188
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
189 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
190 fn in_support(&self, _x : &Loc<S::Type,N>) -> bool {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
191 true
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
192 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
193 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
194
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
195 #[replace_float_literals(S::Type::cast_from(literal))]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
196 impl<S, const N : usize> GlobalAnalysis<S::Type, Bounds<S::Type>> for Gaussian<S, N>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
197 where S : Constant {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
198 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
199 fn global_analysis(&self) -> Bounds<S::Type> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
200 Bounds(0.0, 1.0/self.scale())
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
201 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
202 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
203
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
204 impl<S, const N : usize> LocalAnalysis<S::Type, Bounds<S::Type>, N> for Gaussian<S, N>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
205 where S : Constant {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
206 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
207 fn local_analysis(&self, cube : &Cube<S::Type, N>) -> Bounds<S::Type> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
208 // The function is maximised/minimised where the 2-norm is minimised/maximised.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
209 let lower = self.apply(cube.maxnorm_point());
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
210 let upper = self.apply(cube.minnorm_point());
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
211 Bounds(lower, upper)
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
212 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
213 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
214
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
215 #[replace_float_literals(C::Type::cast_from(literal))]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
216 impl<'a, C : Constant, const N : usize> Norm<C::Type, L1>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
217 for Gaussian<C, N> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
218 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
219 fn norm(&self, _ : L1) -> C::Type {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
220 1.0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
221 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
222 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
223
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
224 #[replace_float_literals(C::Type::cast_from(literal))]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
225 impl<'a, C : Constant, const N : usize> Norm<C::Type, Linfinity>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
226 for Gaussian<C, N> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
227 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
228 fn norm(&self, _ : Linfinity) -> C::Type {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
229 self.bounds().upper()
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
230 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
231 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
232
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
233 #[replace_float_literals(C::Type::cast_from(literal))]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
234 impl<'a, C : Constant, const N : usize> Fourier<C::Type>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
235 for Gaussian<C, N> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
236 type Domain = Loc<C::Type, N>;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
237 type Transformed = Weighted<Gaussian<C::Type, N>, C::Type>;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
238
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
239 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
240 fn fourier(&self) -> Self::Transformed {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
241 let π = C::Type::PI;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
242 let σ2 = self.variance.value();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
243 let g = Gaussian { variance : 1.0 / (4.0*π*π*σ2) };
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
244 g.weigh(g.scale())
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
245 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
246 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
247
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
248 /// Representation of the “cut” gaussian $f χ\_{[-a, a]^n}$
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
249 /// where $a>0$ and $f$ is a gaussian kernel on $ℝ^n$.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
250 pub type BasicCutGaussian<C, S, const N : usize> = SupportProductFirst<CubeIndicator<C, N>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
251 Gaussian<S, N>>;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
252
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
253
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
254 /// This implements $g := χ\_{[-b, b]^n} \* (f χ\_{[-a, a]^n})$ where $a,b>0$ and $f$ is
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
255 /// a gaussian kernel on $ℝ^n$. For an expression for $g$, see Lemma 3.9 in the manuscript.
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
256 #[replace_float_literals(F::cast_from(literal))]
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
257 impl<'a, F : Float, R, C, S, const N : usize> Mapping<Loc<F, N>>
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
258 for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
259 where R : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
260 C : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
261 S : Constant<Type=F> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
262
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
263 type Codomain = F;
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
264
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
265 #[inline]
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
266 fn apply<I : Instance<Loc<F, N>>>(&self, y : I) -> F {
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
267 let Convolution(ref ind,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
268 SupportProductFirst(ref cut,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
269 ref gaussian)) = self;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
270 let a = cut.r.value();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
271 let b = ind.r.value();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
272 let σ = gaussian.variance.value().sqrt();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
273 let t = F::SQRT_2 * σ;
31
6105b5cd8d89 Simplify and fix cut gaussian indicator convolution scaling
Tuomo Valkonen <tuomov@iki.fi>
parents: 0
diff changeset
274 let c = 0.5; // 1/(σ√(2π) * σ√(π/2) = 1/2
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
275
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
276 // This is just a product of one-dimensional versions
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
277 y.cow().product_map(|x| {
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
278 let c1 = -(a.min(b + x)); //(-a).max(-x-b);
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
279 let c2 = a.min(b - x);
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
280 if c1 >= c2 {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
281 0.0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
282 } else {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
283 let e1 = F::cast_from(erf((c1 / t).as_()));
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
284 let e2 = F::cast_from(erf((c2 / t).as_()));
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
285 debug_assert!(e2 >= e1);
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
286 c * (e2 - e1)
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
287 }
31
6105b5cd8d89 Simplify and fix cut gaussian indicator convolution scaling
Tuomo Valkonen <tuomov@iki.fi>
parents: 0
diff changeset
288 })
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
289 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
290 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
291
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
292 /// This implements the differential of $g := χ\_{[-b, b]^n} \* (f χ\_{[-a, a]^n})$ where $a,b>0$
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
293 /// and $f$ is a gaussian kernel on $ℝ^n$. For an expression for the value of $g$, from which the
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
294 /// derivative readily arises (at points of differentiability), see Lemma 3.9 in the manuscript.
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
295 #[replace_float_literals(F::cast_from(literal))]
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
296 impl<'a, F : Float, R, C, S, const N : usize> DifferentiableImpl<Loc<F, N>>
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
297 for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
298 where R : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
299 C : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
300 S : Constant<Type=F> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
301
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
302 type Derivative = Loc<F, N>;
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
303
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
304 /// Although implemented, this function is not differentiable.
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
305 #[inline]
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
306 fn differential_impl<I : Instance<Loc<F, N>>>(&self, y0 : I) -> Loc<F, N> {
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
307 let Convolution(ref ind,
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
308 SupportProductFirst(ref cut,
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
309 ref gaussian)) = self;
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
310 let y = y0.cow();
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
311 let a = cut.r.value();
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
312 let b = ind.r.value();
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
313 let σ = gaussian.variance.value().sqrt();
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
314 let t = F::SQRT_2 * σ;
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
315 let c = 0.5; // 1/(σ√(2π) * σ√(π/2) = 1/2
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
316 let c_mul_erf_scale_div_t = c * F::FRAC_2_SQRT_PI / t;
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
317
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
318 // Calculate the values for all component functions of the
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
319 // product. This is just the loop from apply above.
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
320 let unscaled_vs = y.map(|x| {
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
321 let c1 = -(a.min(b + x)); //(-a).max(-x-b);
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
322 let c2 = a.min(b - x);
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
323 if c1 >= c2 {
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
324 0.0
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
325 } else {
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
326 let e1 = F::cast_from(erf((c1 / t).as_()));
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
327 let e2 = F::cast_from(erf((c2 / t).as_()));
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
328 debug_assert!(e2 >= e1);
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
329 c * (e2 - e1)
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
330 }
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
331 });
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
332 // This computes the gradient for each coordinate
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
333 product_differential(&*y, &unscaled_vs, |x| {
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
334 let c1 = -(a.min(b + x)); //(-a).max(-x-b);
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
335 let c2 = a.min(b - x);
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
336 if c1 >= c2 {
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
337 0.0
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
338 } else {
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
339 // erf'(z) = (2/√π)*exp(-z^2), and we get extra factor 1/(√2*σ) = -1/t
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
340 // from the chain rule (the minus comes from inside c_1 or c_2, and changes the
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
341 // order of de2 and de1 in the final calculation).
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
342 let de1 = if b + x < a {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
343 (-((b+x)/t).powi(2)).exp()
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
344 } else {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
345 0.0
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
346 };
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
347 let de2 = if b - x < a {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
348 (-((b-x)/t).powi(2)).exp()
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
349 } else {
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
350 0.0
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
351 };
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
352 c_mul_erf_scale_div_t * (de1 - de2)
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
353 }
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
354 })
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
355 }
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
356 }
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
357
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
358
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
359 #[replace_float_literals(F::cast_from(literal))]
34
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
360 impl<'a, F : Float, R, C, S, const N : usize> Lipschitz<L1>
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
361 for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
362 where R : Constant<Type=F>,
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
363 C : Constant<Type=F>,
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
364 S : Constant<Type=F> {
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
365 type FloatType = F;
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
366
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
367 fn lipschitz_factor(&self, L1 : L1) -> Option<F> {
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
368 // To get the product Lipschitz factor, we note that for any ψ_i, we have
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
369 // ∏_{i=1}^N φ_i(x_i) - ∏_{i=1}^N φ_i(y_i)
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
370 // = [φ_1(x_1)-φ_1(y_1)] ∏_{i=2}^N φ_i(x_i)
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
371 // + φ_1(y_1)[ ∏_{i=2}^N φ_i(x_i) - ∏_{i=2}^N φ_i(y_i)]
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
372 // = ∑_{j=1}^N [φ_j(x_j)-φ_j(y_j)]∏_{i > j} φ_i(x_i) ∏_{i < j} φ_i(y_i)
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
373 // Thus
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
374 // |∏_{i=1}^N φ_i(x_i) - ∏_{i=1}^N φ_i(y_i)|
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
375 // ≤ ∑_{j=1}^N |φ_j(x_j)-φ_j(y_j)| ∏_{j ≠ i} \max_i |φ_i|
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
376 //
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
377 // Thus we need 1D Lipschitz factors, and the maximum for φ = θ * ψ.
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
378 //
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
379 // We have
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
380 // θ * ψ(x) = 0 if c_1(x) ≥ c_2(x)
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
381 // = (1/2)[erf(c_2(x)/(√2σ)) - erf(c_1(x)/(√2σ))] if c_1(x) < c_2(x),
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
382 // where c_1(x) = max{-x-b,-a} = -min{b+x,a} and c_2(x)=min{b-x,a}, C is the Gaussian
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
383 // normalisation factor, and erf(s) = (2/√π) ∫_0^s e^{-t^2} dt.
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
384 // Thus, if c_1(x) < c_2(x) and c_1(y) < c_2(y), we have
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
385 // θ * ψ(x) - θ * ψ(y) = (1/√π)[∫_{c_1(x)/(√2σ)}^{c_1(y)/(√2σ) e^{-t^2} dt
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
386 // - ∫_{c_2(x)/(√2σ)}^{c_2(y)/(√2σ)] e^{-t^2} dt]
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
387 // Thus
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
388 // |θ * ψ(x) - θ * ψ(y)| ≤ (1/√π)/(√2σ)(|c_1(x)-c_1(y)|+|c_2(x)-c_2(y)|)
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
389 // ≤ 2(1/√π)/(√2σ)|x-y|
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
390 // ≤ √2/(√πσ)|x-y|.
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
391 //
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
392 // For the product we also need the value θ * ψ(0), which is
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
393 // (1/2)[erf(min{a,b}/(√2σ))-erf(max{-b,-a}/(√2σ)]
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
394 // = (1/2)[erf(min{a,b}/(√2σ))-erf(-min{a,b}/(√2σ))]
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
395 // = erf(min{a,b}/(√2σ))
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
396 //
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
397 // If c_1(x) ≥ c_2(x), then x ∉ [-(a+b), a+b]. If also y is outside that range,
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
398 // θ * ψ(x) = θ * ψ(y). If only y is in the range [-(a+b), a+b], we can replace
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
399 // x by -(a+b) or (a+b), either of which is closer to y and still θ * ψ(x)=0.
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
400 // Thus same calculations as above work for the Lipschitz factor.
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
401 let Convolution(ref ind,
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
402 SupportProductFirst(ref cut,
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
403 ref gaussian)) = self;
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
404 let a = cut.r.value();
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
405 let b = ind.r.value();
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
406 let σ = gaussian.variance.value().sqrt();
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
407 let π = F::PI;
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
408 let t = F::SQRT_2 * σ;
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
409 let l1d = F::SQRT_2 / (π.sqrt() * σ);
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
410 let e0 = F::cast_from(erf((a.min(b) / t).as_()));
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
411 Some(l1d * e0.powi(N as i32-1))
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
412 }
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
413 }
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
414
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
415 /*
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
416 impl<'a, F : Float, R, C, S, const N : usize> Lipschitz<L2>
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
417 for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
418 where R : Constant<Type=F>,
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
419 C : Constant<Type=F>,
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
420 S : Constant<Type=F> {
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
421 type FloatType = F;
34
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
422 #[inline]
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
423 fn lipschitz_factor(&self, L2 : L2) -> Option<Self::FloatType> {
efa60bc4f743 Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents: 33
diff changeset
424 self.lipschitz_factor(L1).map(|l1| l1 * <S::Type>::cast_from(N).sqrt())
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
425 }
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
426 }
35
b087e3eab191 New version of sliding.
Tuomo Valkonen <tuomov@iki.fi>
parents: 34
diff changeset
427 */
33
Tuomo Valkonen <tuomov@iki.fi>
parents: 31
diff changeset
428
0
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
429 impl<F : Float, R, C, S, const N : usize>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
430 Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
431 where R : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
432 C : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
433 S : Constant<Type=F> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
434
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
435 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
436 fn get_r(&self) -> F {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
437 let Convolution(ref ind,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
438 SupportProductFirst(ref cut, ..)) = self;
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
439 ind.r.value() + cut.r.value()
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
440 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
441 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
442
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
443 impl<F : Float, R, C, S, const N : usize> Support<F, N>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
444 for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
445 where R : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
446 C : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
447 S : Constant<Type=F> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
448 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
449 fn support_hint(&self) -> Cube<F, N> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
450 let r = self.get_r();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
451 array_init(|| [-r, r]).into()
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
452 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
453
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
454 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
455 fn in_support(&self, y : &Loc<F, N>) -> bool {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
456 let r = self.get_r();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
457 y.iter().all(|x| x.abs() <= r)
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
458 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
459
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
460 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
461 fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
462 let r = self.get_r();
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
463 // From c1 = -a.min(b + x) and c2 = a.min(b - x) with c_1 < c_2,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
464 // solve bounds for x. that is 0 ≤ a.min(b + x) + a.min(b - x).
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
465 // If b + x ≤ a and b - x ≤ a, the sum is 2b ≥ 0.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
466 // If b + x ≥ a and b - x ≥ a, the sum is 2a ≥ 0.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
467 // If b + x ≤ a and b - x ≥ a, the sum is b + x + a ⟹ need x ≥ -a - b = -r.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
468 // If b + x ≥ a and b - x ≤ a, the sum is a + b - x ⟹ need x ≤ a + b = r.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
469 cube.map(|c, d| symmetric_peak_hint(r, c, d))
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
470 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
471 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
472
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
473 impl<F : Float, R, C, S, const N : usize> GlobalAnalysis<F, Bounds<F>>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
474 for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
475 where R : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
476 C : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
477 S : Constant<Type=F> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
478 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
479 fn global_analysis(&self) -> Bounds<F> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
480 Bounds(F::ZERO, self.apply(Loc::ORIGIN))
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
481 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
482 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
483
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
484 impl<F : Float, R, C, S, const N : usize> LocalAnalysis<F, Bounds<F>, N>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
485 for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
486 where R : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
487 C : Constant<Type=F>,
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
488 S : Constant<Type=F> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
489 #[inline]
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
490 fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> {
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
491 // The function is maximised/minimised where the absolute value is minimised/maximised.
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
492 let lower = self.apply(cube.maxnorm_point());
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
493 let upper = self.apply(cube.minnorm_point());
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
494 Bounds(lower, upper)
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
495 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
496 }
eb3c7813b67a Initial version
Tuomo Valkonen <tuomov@iki.fi>
parents:
diff changeset
497

mercurial