Mon, 06 Jan 2025 11:32:57 -0500
Factor fix
0 | 1 | //! Implementation of the gaussian kernel. |
2 | ||
3 | use float_extras::f64::erf; | |
4 | use numeric_literals::replace_float_literals; | |
5 | use serde::Serialize; | |
6 | use alg_tools::types::*; | |
7 | use alg_tools::euclidean::Euclidean; | |
8 | use alg_tools::norms::*; | |
9 | use alg_tools::loc::Loc; | |
10 | use alg_tools::sets::Cube; | |
11 | use alg_tools::bisection_tree::{ | |
12 | Support, | |
13 | Constant, | |
14 | Bounds, | |
15 | LocalAnalysis, | |
16 | GlobalAnalysis, | |
17 | Weighted, | |
18 | Bounded, | |
19 | }; | |
35 | 20 | use alg_tools::mapping::{ |
21 | Mapping, | |
22 | Instance, | |
23 | Differential, | |
24 | DifferentiableImpl, | |
25 | }; | |
0 | 26 | use alg_tools::maputil::array_init; |
27 | ||
35 | 28 | use crate::types::*; |
0 | 29 | use crate::fourier::Fourier; |
30 | use super::base::*; | |
31 | use super::ball_indicator::CubeIndicator; | |
32 | ||
33 | /// Storage presentation of the the anisotropic gaussian kernel of `variance` $σ^2$. | |
34 | /// | |
35 | /// This is the function $f(x) = C e^{-\\|x\\|\_2^2/(2σ^2)}$ for $x ∈ ℝ^N$ | |
36 | /// with $C=1/(2πσ^2)^{N/2}$. | |
37 | #[derive(Copy,Clone,Debug,Serialize,Eq)] | |
38 | pub struct Gaussian<S : Constant, const N : usize> { | |
39 | /// The variance $σ^2$. | |
40 | pub variance : S, | |
41 | } | |
42 | ||
43 | impl<S1, S2, const N : usize> PartialEq<Gaussian<S2, N>> for Gaussian<S1, N> | |
44 | where S1 : Constant, | |
45 | S2 : Constant<Type=S1::Type> { | |
46 | fn eq(&self, other : &Gaussian<S2, N>) -> bool { | |
47 | self.variance.value() == other.variance.value() | |
48 | } | |
49 | } | |
50 | ||
51 | impl<S1, S2, const N : usize> PartialOrd<Gaussian<S2, N>> for Gaussian<S1, N> | |
52 | where S1 : Constant, | |
53 | S2 : Constant<Type=S1::Type> { | |
54 | ||
55 | fn partial_cmp(&self, other : &Gaussian<S2, N>) -> Option<std::cmp::Ordering> { | |
56 | // A gaussian is ≤ another gaussian if the Fourier transforms satisfy the | |
57 | // corresponding inequality. That in turns holds if and only if the variances | |
58 | // satisfy the opposite inequality. | |
59 | let σ1sq = self.variance.value(); | |
60 | let σ2sq = other.variance.value(); | |
61 | σ2sq.partial_cmp(&σ1sq) | |
62 | } | |
63 | } | |
64 | ||
65 | ||
66 | #[replace_float_literals(S::Type::cast_from(literal))] | |
35 | 67 | impl<'a, S, const N : usize> Mapping<Loc<S::Type, N>> for Gaussian<S, N> |
68 | where | |
69 | S : Constant | |
70 | { | |
71 | type Codomain = S::Type; | |
72 | ||
0 | 73 | // This is not normalised to neither to have value 1 at zero or integral 1 |
74 | // (unless the cut-off ε=0). | |
75 | #[inline] | |
35 | 76 | fn apply<I : Instance<Loc<S::Type, N>>>(&self, x : I) -> Self::Codomain { |
77 | let d_squared = x.eval(|x| x.norm2_squared()); | |
0 | 78 | let σ2 = self.variance.value(); |
79 | let scale = self.scale(); | |
80 | (-d_squared / (2.0 * σ2)).exp() / scale | |
81 | } | |
82 | } | |
83 | ||
35 | 84 | #[replace_float_literals(S::Type::cast_from(literal))] |
85 | impl<'a, S, const N : usize> DifferentiableImpl<Loc<S::Type, N>> for Gaussian<S, N> | |
0 | 86 | where S : Constant { |
35 | 87 | type Derivative = Loc<S::Type, N>; |
88 | ||
0 | 89 | #[inline] |
35 | 90 | fn differential_impl<I : Instance<Loc<S::Type, N>>>(&self, x0 : I) -> Self::Derivative { |
91 | let x = x0.cow(); | |
92 | let f = -self.apply(&*x) / self.variance.value(); | |
93 | *x * f | |
0 | 94 | } |
95 | } | |
96 | ||
33 | 97 | |
35 | 98 | // To calculate the the Lipschitz factors, we consider |
99 | // f(t) = e^{-t²/2} | |
100 | // f'(t) = -t f(t) which has max at t=1 by f''(t)=0 | |
101 | // f''(t) = (t²-1)f(t) which has max at t=√3 by f'''(t)=0 | |
102 | // f'''(t) = -(t³-3t) | |
103 | // So f has the Lipschitz factor L=f'(1), and f' has the Lipschitz factor L'=f''(√3). | |
104 | // | |
105 | // Now g(x) = Cf(‖x‖/σ) for a scaling factor C is the Gaussian. | |
106 | // Thus ‖g(x)-g(y)‖ = C‖f(‖x‖/σ)-f(‖y‖/σ)‖ ≤ (C/σ)L‖x-y‖, | |
107 | // so g has the Lipschitz factor (C/σ)f'(1) = (C/σ)exp(-0.5). | |
108 | // | |
109 | // Also ∇g(x)= Cx/(σ‖x‖)f'(‖x‖/σ) (*) | |
110 | // = -(C/σ²)xf(‖x‖/σ) | |
111 | // = -C/σ (x/σ) f(‖x/σ‖) | |
112 | // ∇²g(x) = -(C/σ)[Id/σ f(‖x‖/σ) + x ⊗ x/(σ²‖x‖) f'(‖x‖/σ)] | |
113 | // = (C/σ²)[-Id + x ⊗ x/σ²]f(‖x‖/σ). | |
114 | // Thus ‖∇²g(x)‖ = (C/σ²)‖-Id + x ⊗ x/σ²‖f(‖x‖/σ), where | |
115 | // ‖-Id + x ⊗ x/σ²‖ = ‖[-Id + x ⊗ x/σ²](x/‖x‖)‖ = |-1 + ‖x²/σ^2‖|. | |
116 | // This means that ‖∇²g(x)‖ = (C/σ²)|f''(‖x‖/σ)|, which is maximised with ‖x‖/σ=√3. | |
117 | // Hence the Lipschitz factor of ∇g is (C/σ²)f''(√3) = (C/σ²)2e^{-3/2}. | |
33 | 118 | |
119 | #[replace_float_literals(S::Type::cast_from(literal))] | |
120 | impl<S, const N : usize> Lipschitz<L2> for Gaussian<S, N> | |
121 | where S : Constant { | |
122 | type FloatType = S::Type; | |
123 | fn lipschitz_factor(&self, L2 : L2) -> Option<Self::FloatType> { | |
124 | Some((-0.5).exp() / (self.scale() * self.variance.value().sqrt())) | |
125 | } | |
126 | } | |
0 | 127 | |
35 | 128 | |
129 | #[replace_float_literals(S::Type::cast_from(literal))] | |
130 | impl<'a, S : Constant, const N : usize> Lipschitz<L2> | |
131 | for Differential<'a, Loc<S::Type, N>, Gaussian<S, N>> { | |
132 | type FloatType = S::Type; | |
133 | ||
134 | fn lipschitz_factor(&self, _l2 : L2) -> Option<S::Type> { | |
135 | let g = self.base_fn(); | |
136 | let σ2 = g.variance.value(); | |
137 | let scale = g.scale(); | |
138 | Some(2.0*(-3.0/2.0).exp()/(σ2*scale)) | |
139 | } | |
140 | } | |
141 | ||
142 | // From above, norm bounds on the differnential can be calculated as achieved | |
143 | // for f' at t=1, i.e., the bound is |f'(1)|. | |
144 | // For g then |C/σ f'(1)|. | |
145 | // It follows that the norm bounds on the differential are just the Lipschitz | |
146 | // factors of the undifferentiated function, given how the latter is calculed above. | |
147 | ||
148 | #[replace_float_literals(S::Type::cast_from(literal))] | |
149 | impl<'b, S : Constant, const N : usize> NormBounded<L2> | |
150 | for Differential<'b, Loc<S::Type, N>, Gaussian<S, N>> { | |
151 | type FloatType = S::Type; | |
152 | ||
153 | fn norm_bound(&self, _l2 : L2) -> S::Type { | |
154 | self.base_fn().lipschitz_factor(L2).unwrap() | |
155 | } | |
156 | } | |
157 | ||
158 | #[replace_float_literals(S::Type::cast_from(literal))] | |
159 | impl<'b, 'a, S : Constant, const N : usize> NormBounded<L2> | |
160 | for Differential<'b, Loc<S::Type, N>, &'a Gaussian<S, N>> { | |
161 | type FloatType = S::Type; | |
162 | ||
163 | fn norm_bound(&self, _l2 : L2) -> S::Type { | |
164 | self.base_fn().lipschitz_factor(L2).unwrap() | |
165 | } | |
166 | } | |
167 | ||
168 | ||
0 | 169 | #[replace_float_literals(S::Type::cast_from(literal))] |
170 | impl<'a, S, const N : usize> Gaussian<S, N> | |
171 | where S : Constant { | |
172 | ||
173 | /// Returns the (reciprocal) scaling constant $1/C=(2πσ^2)^{N/2}$. | |
174 | #[inline] | |
175 | pub fn scale(&self) -> S::Type { | |
176 | let π = S::Type::PI; | |
177 | let σ2 = self.variance.value(); | |
178 | (2.0*π*σ2).powi(N as i32).sqrt() | |
179 | } | |
180 | } | |
181 | ||
182 | impl<'a, S, const N : usize> Support<S::Type, N> for Gaussian<S, N> | |
183 | where S : Constant { | |
184 | #[inline] | |
185 | fn support_hint(&self) -> Cube<S::Type,N> { | |
186 | array_init(|| [S::Type::NEG_INFINITY, S::Type::INFINITY]).into() | |
187 | } | |
188 | ||
189 | #[inline] | |
190 | fn in_support(&self, _x : &Loc<S::Type,N>) -> bool { | |
191 | true | |
192 | } | |
193 | } | |
194 | ||
195 | #[replace_float_literals(S::Type::cast_from(literal))] | |
196 | impl<S, const N : usize> GlobalAnalysis<S::Type, Bounds<S::Type>> for Gaussian<S, N> | |
197 | where S : Constant { | |
198 | #[inline] | |
199 | fn global_analysis(&self) -> Bounds<S::Type> { | |
200 | Bounds(0.0, 1.0/self.scale()) | |
201 | } | |
202 | } | |
203 | ||
204 | impl<S, const N : usize> LocalAnalysis<S::Type, Bounds<S::Type>, N> for Gaussian<S, N> | |
205 | where S : Constant { | |
206 | #[inline] | |
207 | fn local_analysis(&self, cube : &Cube<S::Type, N>) -> Bounds<S::Type> { | |
208 | // The function is maximised/minimised where the 2-norm is minimised/maximised. | |
209 | let lower = self.apply(cube.maxnorm_point()); | |
210 | let upper = self.apply(cube.minnorm_point()); | |
211 | Bounds(lower, upper) | |
212 | } | |
213 | } | |
214 | ||
215 | #[replace_float_literals(C::Type::cast_from(literal))] | |
216 | impl<'a, C : Constant, const N : usize> Norm<C::Type, L1> | |
217 | for Gaussian<C, N> { | |
218 | #[inline] | |
219 | fn norm(&self, _ : L1) -> C::Type { | |
220 | 1.0 | |
221 | } | |
222 | } | |
223 | ||
224 | #[replace_float_literals(C::Type::cast_from(literal))] | |
225 | impl<'a, C : Constant, const N : usize> Norm<C::Type, Linfinity> | |
226 | for Gaussian<C, N> { | |
227 | #[inline] | |
228 | fn norm(&self, _ : Linfinity) -> C::Type { | |
229 | self.bounds().upper() | |
230 | } | |
231 | } | |
232 | ||
233 | #[replace_float_literals(C::Type::cast_from(literal))] | |
234 | impl<'a, C : Constant, const N : usize> Fourier<C::Type> | |
235 | for Gaussian<C, N> { | |
236 | type Domain = Loc<C::Type, N>; | |
237 | type Transformed = Weighted<Gaussian<C::Type, N>, C::Type>; | |
238 | ||
239 | #[inline] | |
240 | fn fourier(&self) -> Self::Transformed { | |
241 | let π = C::Type::PI; | |
242 | let σ2 = self.variance.value(); | |
243 | let g = Gaussian { variance : 1.0 / (4.0*π*π*σ2) }; | |
244 | g.weigh(g.scale()) | |
245 | } | |
246 | } | |
247 | ||
248 | /// Representation of the “cut” gaussian $f χ\_{[-a, a]^n}$ | |
249 | /// where $a>0$ and $f$ is a gaussian kernel on $ℝ^n$. | |
250 | pub type BasicCutGaussian<C, S, const N : usize> = SupportProductFirst<CubeIndicator<C, N>, | |
251 | Gaussian<S, N>>; | |
252 | ||
253 | ||
33 | 254 | /// This implements $g := χ\_{[-b, b]^n} \* (f χ\_{[-a, a]^n})$ where $a,b>0$ and $f$ is |
255 | /// a gaussian kernel on $ℝ^n$. For an expression for $g$, see Lemma 3.9 in the manuscript. | |
0 | 256 | #[replace_float_literals(F::cast_from(literal))] |
35 | 257 | impl<'a, F : Float, R, C, S, const N : usize> Mapping<Loc<F, N>> |
0 | 258 | for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> |
259 | where R : Constant<Type=F>, | |
260 | C : Constant<Type=F>, | |
261 | S : Constant<Type=F> { | |
262 | ||
35 | 263 | type Codomain = F; |
0 | 264 | |
265 | #[inline] | |
35 | 266 | fn apply<I : Instance<Loc<F, N>>>(&self, y : I) -> F { |
0 | 267 | let Convolution(ref ind, |
268 | SupportProductFirst(ref cut, | |
269 | ref gaussian)) = self; | |
270 | let a = cut.r.value(); | |
271 | let b = ind.r.value(); | |
272 | let σ = gaussian.variance.value().sqrt(); | |
273 | let t = F::SQRT_2 * σ; | |
31
6105b5cd8d89
Simplify and fix cut gaussian indicator convolution scaling
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
274 | let c = 0.5; // 1/(σ√(2π) * σ√(π/2) = 1/2 |
0 | 275 | |
276 | // This is just a product of one-dimensional versions | |
35 | 277 | y.cow().product_map(|x| { |
0 | 278 | let c1 = -(a.min(b + x)); //(-a).max(-x-b); |
279 | let c2 = a.min(b - x); | |
280 | if c1 >= c2 { | |
281 | 0.0 | |
282 | } else { | |
283 | let e1 = F::cast_from(erf((c1 / t).as_())); | |
284 | let e2 = F::cast_from(erf((c2 / t).as_())); | |
285 | debug_assert!(e2 >= e1); | |
286 | c * (e2 - e1) | |
287 | } | |
31
6105b5cd8d89
Simplify and fix cut gaussian indicator convolution scaling
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
288 | }) |
0 | 289 | } |
290 | } | |
291 | ||
35 | 292 | /// This implements the differential of $g := χ\_{[-b, b]^n} \* (f χ\_{[-a, a]^n})$ where $a,b>0$ |
293 | /// and $f$ is a gaussian kernel on $ℝ^n$. For an expression for the value of $g$, from which the | |
294 | /// derivative readily arises (at points of differentiability), see Lemma 3.9 in the manuscript. | |
295 | #[replace_float_literals(F::cast_from(literal))] | |
296 | impl<'a, F : Float, R, C, S, const N : usize> DifferentiableImpl<Loc<F, N>> | |
0 | 297 | for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> |
298 | where R : Constant<Type=F>, | |
299 | C : Constant<Type=F>, | |
300 | S : Constant<Type=F> { | |
301 | ||
35 | 302 | type Derivative = Loc<F, N>; |
0 | 303 | |
35 | 304 | /// Although implemented, this function is not differentiable. |
33 | 305 | #[inline] |
35 | 306 | fn differential_impl<I : Instance<Loc<F, N>>>(&self, y0 : I) -> Loc<F, N> { |
33 | 307 | let Convolution(ref ind, |
308 | SupportProductFirst(ref cut, | |
309 | ref gaussian)) = self; | |
35 | 310 | let y = y0.cow(); |
33 | 311 | let a = cut.r.value(); |
312 | let b = ind.r.value(); | |
313 | let σ = gaussian.variance.value().sqrt(); | |
314 | let t = F::SQRT_2 * σ; | |
315 | let c = 0.5; // 1/(σ√(2π) * σ√(π/2) = 1/2 | |
35 | 316 | let c_mul_erf_scale_div_t = c * F::FRAC_2_SQRT_PI / t; |
33 | 317 | |
318 | // Calculate the values for all component functions of the | |
319 | // product. This is just the loop from apply above. | |
320 | let unscaled_vs = y.map(|x| { | |
321 | let c1 = -(a.min(b + x)); //(-a).max(-x-b); | |
322 | let c2 = a.min(b - x); | |
323 | if c1 >= c2 { | |
324 | 0.0 | |
325 | } else { | |
326 | let e1 = F::cast_from(erf((c1 / t).as_())); | |
327 | let e2 = F::cast_from(erf((c2 / t).as_())); | |
328 | debug_assert!(e2 >= e1); | |
329 | c * (e2 - e1) | |
330 | } | |
331 | }); | |
332 | // This computes the gradient for each coordinate | |
35 | 333 | product_differential(&*y, &unscaled_vs, |x| { |
33 | 334 | let c1 = -(a.min(b + x)); //(-a).max(-x-b); |
335 | let c2 = a.min(b - x); | |
336 | if c1 >= c2 { | |
337 | 0.0 | |
338 | } else { | |
35 | 339 | // erf'(z) = (2/√π)*exp(-z^2), and we get extra factor 1/(√2*σ) = -1/t |
340 | // from the chain rule (the minus comes from inside c_1 or c_2, and changes the | |
341 | // order of de2 and de1 in the final calculation). | |
342 | let de1 = if b + x < a { | |
343 | (-((b+x)/t).powi(2)).exp() | |
344 | } else { | |
345 | 0.0 | |
346 | }; | |
347 | let de2 = if b - x < a { | |
348 | (-((b-x)/t).powi(2)).exp() | |
349 | } else { | |
350 | 0.0 | |
351 | }; | |
352 | c_mul_erf_scale_div_t * (de1 - de2) | |
33 | 353 | } |
354 | }) | |
355 | } | |
356 | } | |
357 | ||
358 | ||
359 | #[replace_float_literals(F::cast_from(literal))] | |
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
360 | impl<'a, F : Float, R, C, S, const N : usize> Lipschitz<L1> |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
361 | for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
362 | where R : Constant<Type=F>, |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
363 | C : Constant<Type=F>, |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
364 | S : Constant<Type=F> { |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
365 | type FloatType = F; |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
366 | |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
367 | fn lipschitz_factor(&self, L1 : L1) -> Option<F> { |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
368 | // To get the product Lipschitz factor, we note that for any ψ_i, we have |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
369 | // ∏_{i=1}^N φ_i(x_i) - ∏_{i=1}^N φ_i(y_i) |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
370 | // = [φ_1(x_1)-φ_1(y_1)] ∏_{i=2}^N φ_i(x_i) |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
371 | // + φ_1(y_1)[ ∏_{i=2}^N φ_i(x_i) - ∏_{i=2}^N φ_i(y_i)] |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
372 | // = ∑_{j=1}^N [φ_j(x_j)-φ_j(y_j)]∏_{i > j} φ_i(x_i) ∏_{i < j} φ_i(y_i) |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
373 | // Thus |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
374 | // |∏_{i=1}^N φ_i(x_i) - ∏_{i=1}^N φ_i(y_i)| |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
375 | // ≤ ∑_{j=1}^N |φ_j(x_j)-φ_j(y_j)| ∏_{j ≠ i} \max_i |φ_i| |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
376 | // |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
377 | // Thus we need 1D Lipschitz factors, and the maximum for φ = θ * ψ. |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
378 | // |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
379 | // We have |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
380 | // θ * ψ(x) = 0 if c_1(x) ≥ c_2(x) |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
381 | // = (1/2)[erf(c_2(x)/(√2σ)) - erf(c_1(x)/(√2σ))] if c_1(x) < c_2(x), |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
382 | // where c_1(x) = max{-x-b,-a} = -min{b+x,a} and c_2(x)=min{b-x,a}, C is the Gaussian |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
383 | // normalisation factor, and erf(s) = (2/√π) ∫_0^s e^{-t^2} dt. |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
384 | // Thus, if c_1(x) < c_2(x) and c_1(y) < c_2(y), we have |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
385 | // θ * ψ(x) - θ * ψ(y) = (1/√π)[∫_{c_1(x)/(√2σ)}^{c_1(y)/(√2σ) e^{-t^2} dt |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
386 | // - ∫_{c_2(x)/(√2σ)}^{c_2(y)/(√2σ)] e^{-t^2} dt] |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
387 | // Thus |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
388 | // |θ * ψ(x) - θ * ψ(y)| ≤ (1/√π)/(√2σ)(|c_1(x)-c_1(y)|+|c_2(x)-c_2(y)|) |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
389 | // ≤ 2(1/√π)/(√2σ)|x-y| |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
390 | // ≤ √2/(√πσ)|x-y|. |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
391 | // |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
392 | // For the product we also need the value θ * ψ(0), which is |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
393 | // (1/2)[erf(min{a,b}/(√2σ))-erf(max{-b,-a}/(√2σ)] |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
394 | // = (1/2)[erf(min{a,b}/(√2σ))-erf(-min{a,b}/(√2σ))] |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
395 | // = erf(min{a,b}/(√2σ)) |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
396 | // |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
397 | // If c_1(x) ≥ c_2(x), then x ∉ [-(a+b), a+b]. If also y is outside that range, |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
398 | // θ * ψ(x) = θ * ψ(y). If only y is in the range [-(a+b), a+b], we can replace |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
399 | // x by -(a+b) or (a+b), either of which is closer to y and still θ * ψ(x)=0. |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
400 | // Thus same calculations as above work for the Lipschitz factor. |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
401 | let Convolution(ref ind, |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
402 | SupportProductFirst(ref cut, |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
403 | ref gaussian)) = self; |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
404 | let a = cut.r.value(); |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
405 | let b = ind.r.value(); |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
406 | let σ = gaussian.variance.value().sqrt(); |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
407 | let π = F::PI; |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
408 | let t = F::SQRT_2 * σ; |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
409 | let l1d = F::SQRT_2 / (π.sqrt() * σ); |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
410 | let e0 = F::cast_from(erf((a.min(b) / t).as_())); |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
411 | Some(l1d * e0.powi(N as i32-1)) |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
412 | } |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
413 | } |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
414 | |
35 | 415 | /* |
33 | 416 | impl<'a, F : Float, R, C, S, const N : usize> Lipschitz<L2> |
417 | for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> | |
418 | where R : Constant<Type=F>, | |
419 | C : Constant<Type=F>, | |
420 | S : Constant<Type=F> { | |
421 | type FloatType = F; | |
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
422 | #[inline] |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
423 | fn lipschitz_factor(&self, L2 : L2) -> Option<Self::FloatType> { |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
33
diff
changeset
|
424 | self.lipschitz_factor(L1).map(|l1| l1 * <S::Type>::cast_from(N).sqrt()) |
33 | 425 | } |
426 | } | |
35 | 427 | */ |
33 | 428 | |
0 | 429 | impl<F : Float, R, C, S, const N : usize> |
430 | Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> | |
431 | where R : Constant<Type=F>, | |
432 | C : Constant<Type=F>, | |
433 | S : Constant<Type=F> { | |
434 | ||
435 | #[inline] | |
436 | fn get_r(&self) -> F { | |
437 | let Convolution(ref ind, | |
438 | SupportProductFirst(ref cut, ..)) = self; | |
439 | ind.r.value() + cut.r.value() | |
440 | } | |
441 | } | |
442 | ||
443 | impl<F : Float, R, C, S, const N : usize> Support<F, N> | |
444 | for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> | |
445 | where R : Constant<Type=F>, | |
446 | C : Constant<Type=F>, | |
447 | S : Constant<Type=F> { | |
448 | #[inline] | |
449 | fn support_hint(&self) -> Cube<F, N> { | |
450 | let r = self.get_r(); | |
451 | array_init(|| [-r, r]).into() | |
452 | } | |
453 | ||
454 | #[inline] | |
455 | fn in_support(&self, y : &Loc<F, N>) -> bool { | |
456 | let r = self.get_r(); | |
457 | y.iter().all(|x| x.abs() <= r) | |
458 | } | |
459 | ||
460 | #[inline] | |
461 | fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { | |
462 | let r = self.get_r(); | |
463 | // From c1 = -a.min(b + x) and c2 = a.min(b - x) with c_1 < c_2, | |
464 | // solve bounds for x. that is 0 ≤ a.min(b + x) + a.min(b - x). | |
465 | // If b + x ≤ a and b - x ≤ a, the sum is 2b ≥ 0. | |
466 | // If b + x ≥ a and b - x ≥ a, the sum is 2a ≥ 0. | |
467 | // If b + x ≤ a and b - x ≥ a, the sum is b + x + a ⟹ need x ≥ -a - b = -r. | |
468 | // If b + x ≥ a and b - x ≤ a, the sum is a + b - x ⟹ need x ≤ a + b = r. | |
469 | cube.map(|c, d| symmetric_peak_hint(r, c, d)) | |
470 | } | |
471 | } | |
472 | ||
473 | impl<F : Float, R, C, S, const N : usize> GlobalAnalysis<F, Bounds<F>> | |
474 | for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> | |
475 | where R : Constant<Type=F>, | |
476 | C : Constant<Type=F>, | |
477 | S : Constant<Type=F> { | |
478 | #[inline] | |
479 | fn global_analysis(&self) -> Bounds<F> { | |
480 | Bounds(F::ZERO, self.apply(Loc::ORIGIN)) | |
481 | } | |
482 | } | |
483 | ||
484 | impl<F : Float, R, C, S, const N : usize> LocalAnalysis<F, Bounds<F>, N> | |
485 | for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> | |
486 | where R : Constant<Type=F>, | |
487 | C : Constant<Type=F>, | |
488 | S : Constant<Type=F> { | |
489 | #[inline] | |
490 | fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { | |
491 | // The function is maximised/minimised where the absolute value is minimised/maximised. | |
492 | let lower = self.apply(cube.maxnorm_point()); | |
493 | let upper = self.apply(cube.minnorm_point()); | |
494 | Bounds(lower, upper) | |
495 | } | |
496 | } | |
497 |