src/kernels/gaussian.rs

changeset 0
eb3c7813b67a
child 3
0778a71cbb6a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/kernels/gaussian.rs	Thu Dec 01 23:07:35 2022 +0200
@@ -0,0 +1,295 @@
+//! Implementation of the gaussian kernel.
+
+use float_extras::f64::erf;
+use numeric_literals::replace_float_literals;
+use serde::Serialize;
+use alg_tools::types::*;
+use alg_tools::euclidean::Euclidean;
+use alg_tools::norms::*;
+use alg_tools::loc::Loc;
+use alg_tools::sets::Cube;
+use alg_tools::bisection_tree::{
+    Support,
+    Constant,
+    Bounds,
+    LocalAnalysis,
+    GlobalAnalysis,
+    Weighted,
+    Bounded,
+};
+use alg_tools::mapping::Apply;
+use alg_tools::maputil::array_init;
+
+use crate::fourier::Fourier;
+use super::base::*;
+use super::ball_indicator::CubeIndicator;
+
+/// Storage presentation of the the anisotropic gaussian kernel of `variance` $σ^2$.
+///
+/// This is the function $f(x) = C e^{-\\|x\\|\_2^2/(2σ^2)}$ for $x ∈ ℝ^N$
+/// with $C=1/(2πσ^2)^{N/2}$.
+#[derive(Copy,Clone,Debug,Serialize,Eq)]
+pub struct Gaussian<S : Constant, const N : usize> {
+    /// The variance $σ^2$.
+    pub variance : S,
+}
+
+impl<S1, S2, const N : usize> PartialEq<Gaussian<S2, N>> for Gaussian<S1, N>
+where S1 : Constant,
+      S2 : Constant<Type=S1::Type> {
+    fn eq(&self, other : &Gaussian<S2, N>) -> bool {
+        self.variance.value() == other.variance.value()
+    }
+}
+
+impl<S1, S2, const N : usize> PartialOrd<Gaussian<S2, N>> for Gaussian<S1, N>
+where S1 : Constant,
+      S2 : Constant<Type=S1::Type> {
+
+    fn partial_cmp(&self, other : &Gaussian<S2, N>) -> Option<std::cmp::Ordering> {
+        // A gaussian is ≤ another gaussian if the Fourier transforms satisfy the
+        // corresponding inequality. That in turns holds if and only if the variances
+        // satisfy the opposite inequality.
+        let σ1sq = self.variance.value();
+        let σ2sq = other.variance.value();
+        σ2sq.partial_cmp(&σ1sq)
+    }
+}
+
+
+#[replace_float_literals(S::Type::cast_from(literal))]
+impl<'a, S, const N : usize> Apply<&'a Loc<S::Type, N>> for Gaussian<S, N>
+where S : Constant {
+    type Output = S::Type;
+    // This is not normalised to neither to have value 1 at zero or integral 1
+    // (unless the cut-off ε=0).
+    #[inline]
+    fn apply(&self, x : &'a Loc<S::Type, N>) -> Self::Output {
+        let d_squared = x.norm2_squared();
+        let σ2 = self.variance.value();
+        let scale = self.scale();
+        (-d_squared / (2.0 * σ2)).exp() / scale
+    }
+}
+
+impl<S, const N : usize> Apply<Loc<S::Type, N>> for Gaussian<S, N>
+where S : Constant {
+    type Output = S::Type;
+    // This is not normalised to neither to have value 1 at zero or integral 1
+    // (unless the cut-off ε=0).
+    #[inline]
+    fn apply(&self, x : Loc<S::Type, N>) -> Self::Output {
+        self.apply(&x)
+    }
+}
+
+
+#[replace_float_literals(S::Type::cast_from(literal))]
+impl<'a, S, const N : usize> Gaussian<S, N>
+where S : Constant {
+
+    /// Returns the (reciprocal) scaling constant $1/C=(2πσ^2)^{N/2}$.
+    #[inline]
+    pub fn scale(&self) -> S::Type {
+        let π = S::Type::PI;
+        let σ2 = self.variance.value();
+        (2.0*π*σ2).powi(N as i32).sqrt()
+    }
+}
+
+impl<'a, S, const N : usize> Support<S::Type, N> for Gaussian<S, N>
+where S : Constant {
+    #[inline]
+    fn support_hint(&self) -> Cube<S::Type,N> {
+        array_init(|| [S::Type::NEG_INFINITY, S::Type::INFINITY]).into()
+    }
+
+    #[inline]
+    fn in_support(&self, _x : &Loc<S::Type,N>) -> bool {
+        true
+    }
+}
+
+#[replace_float_literals(S::Type::cast_from(literal))]
+impl<S, const N : usize> GlobalAnalysis<S::Type, Bounds<S::Type>>  for Gaussian<S, N>
+where S : Constant {
+    #[inline]
+    fn global_analysis(&self) -> Bounds<S::Type> {
+        Bounds(0.0, 1.0/self.scale())
+    }
+}
+
+impl<S, const N : usize> LocalAnalysis<S::Type, Bounds<S::Type>, N>  for Gaussian<S, N>
+where S : Constant {
+    #[inline]
+    fn local_analysis(&self, cube : &Cube<S::Type, N>) -> Bounds<S::Type> {
+        // The function is maximised/minimised where the 2-norm is minimised/maximised.
+        let lower = self.apply(cube.maxnorm_point());
+        let upper = self.apply(cube.minnorm_point());
+        Bounds(lower, upper)
+    }
+}
+
+#[replace_float_literals(C::Type::cast_from(literal))]
+impl<'a, C : Constant, const N : usize> Norm<C::Type, L1>
+for Gaussian<C, N> {
+    #[inline]
+    fn norm(&self, _ : L1) -> C::Type {
+        1.0
+    }
+}
+
+#[replace_float_literals(C::Type::cast_from(literal))]
+impl<'a, C : Constant, const N : usize> Norm<C::Type, Linfinity>
+for Gaussian<C, N> {
+    #[inline]
+    fn norm(&self, _ : Linfinity) -> C::Type {
+        self.bounds().upper()
+    }
+}
+
+#[replace_float_literals(C::Type::cast_from(literal))]
+impl<'a, C : Constant, const N : usize> Fourier<C::Type>
+for Gaussian<C, N> {
+    type Domain = Loc<C::Type, N>;
+    type Transformed = Weighted<Gaussian<C::Type, N>, C::Type>;
+
+    #[inline]
+    fn fourier(&self) -> Self::Transformed {
+        let π = C::Type::PI;
+        let σ2 = self.variance.value();
+        let g = Gaussian { variance : 1.0 / (4.0*π*π*σ2) };
+        g.weigh(g.scale())
+    }
+}
+
+/// Representation of the “cut” gaussian $f χ\_{[-a, a]^n}$
+/// where $a>0$ and $f$ is a gaussian kernel on $ℝ^n$.
+pub type BasicCutGaussian<C, S, const N : usize> = SupportProductFirst<CubeIndicator<C, N>,
+                                                                       Gaussian<S, N>>;
+
+
+/// This implements $χ\_{[-b, b]^n} \* (f χ\_{[-a, a]^n})$
+/// where $a,b>0$ and $f$ is a gaussian kernel on $ℝ^n$.
+#[replace_float_literals(F::cast_from(literal))]
+impl<'a, F : Float, R, C, S, const N : usize> Apply<&'a Loc<F, N>>
+for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
+where R : Constant<Type=F>,
+      C : Constant<Type=F>,
+      S : Constant<Type=F> {
+
+    type Output = F;
+
+    #[inline]
+    fn apply(&self, y : &'a Loc<F, N>) -> F {
+        let Convolution(ref ind,
+                        SupportProductFirst(ref cut,
+                                            ref gaussian)) = self;
+        let a = cut.r.value();
+        let b = ind.r.value();
+        let σ = gaussian.variance.value().sqrt();
+        let π = F::PI;
+        let t = F::SQRT_2 * σ;
+        let c = σ * (8.0/π).sqrt();
+        
+        // This is just a product of one-dimensional versions
+        let unscaled = y.product_map(|x| {
+            let c1 = -(a.min(b + x)); //(-a).max(-x-b);
+            let c2 = a.min(b - x);
+            if c1 >= c2 {
+                0.0
+            } else {
+                let e1 = F::cast_from(erf((c1 / t).as_()));
+                let e2 = F::cast_from(erf((c2 / t).as_()));
+                debug_assert!(e2 >= e1);
+                c * (e2 - e1)
+            }
+        });
+        
+        unscaled / gaussian.scale()
+    }
+}
+
+impl<F : Float, R, C, S, const N : usize> Apply<Loc<F, N>>
+for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
+where R : Constant<Type=F>,
+      C : Constant<Type=F>,
+      S : Constant<Type=F> {
+
+    type Output = F;
+
+    #[inline]
+    fn apply(&self, y : Loc<F, N>) -> F {
+        self.apply(&y)
+    }
+}
+
+impl<F : Float, R, C, S, const N : usize>
+Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
+where R : Constant<Type=F>,
+      C : Constant<Type=F>,
+      S : Constant<Type=F> {
+
+    #[inline]
+    fn get_r(&self) -> F {
+        let Convolution(ref ind,
+                        SupportProductFirst(ref cut, ..)) = self;
+        ind.r.value() + cut.r.value()
+    }
+}
+
+impl<F : Float, R, C, S, const N : usize> Support<F, N>
+for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
+where R : Constant<Type=F>,
+      C : Constant<Type=F>,
+      S : Constant<Type=F> {
+    #[inline]
+    fn support_hint(&self) -> Cube<F, N> {
+        let r = self.get_r();
+        array_init(|| [-r, r]).into()
+    }
+
+    #[inline]
+    fn in_support(&self, y : &Loc<F, N>) -> bool {
+        let r = self.get_r();
+        y.iter().all(|x| x.abs() <= r)
+    }
+
+    #[inline]
+    fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] {
+        let r = self.get_r();
+        // From c1 = -a.min(b + x) and c2 = a.min(b - x) with c_1 < c_2,
+        // solve bounds for x. that is 0 ≤ a.min(b + x) + a.min(b - x).
+        // If b + x ≤ a and b - x ≤ a, the sum is 2b ≥ 0.
+        // If b + x ≥ a and b - x ≥ a, the sum is 2a ≥ 0.
+        // If b + x ≤ a and b - x ≥ a, the sum is b + x + a ⟹ need x ≥ -a - b = -r.
+        // If b + x ≥ a and b - x ≤ a, the sum is a + b - x ⟹ need x ≤ a + b = r.
+        cube.map(|c, d| symmetric_peak_hint(r, c, d))
+    }
+}
+
+impl<F : Float, R, C, S, const N : usize> GlobalAnalysis<F, Bounds<F>>
+for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
+where R : Constant<Type=F>,
+      C : Constant<Type=F>,
+      S : Constant<Type=F> {
+    #[inline]
+    fn global_analysis(&self) -> Bounds<F> {
+        Bounds(F::ZERO, self.apply(Loc::ORIGIN))
+    }
+}
+
+impl<F : Float, R, C, S, const N : usize> LocalAnalysis<F, Bounds<F>, N>
+for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>
+where R : Constant<Type=F>,
+      C : Constant<Type=F>,
+      S : Constant<Type=F> {
+    #[inline]
+    fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> {
+        // The function is maximised/minimised where the absolute value is minimised/maximised.
+        let lower = self.apply(cube.maxnorm_point());
+        let upper = self.apply(cube.minnorm_point());
+        Bounds(lower, upper)
+    }
+}
+

mercurial