--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/kernels/gaussian.rs Thu Dec 01 23:07:35 2022 +0200 @@ -0,0 +1,295 @@ +//! Implementation of the gaussian kernel. + +use float_extras::f64::erf; +use numeric_literals::replace_float_literals; +use serde::Serialize; +use alg_tools::types::*; +use alg_tools::euclidean::Euclidean; +use alg_tools::norms::*; +use alg_tools::loc::Loc; +use alg_tools::sets::Cube; +use alg_tools::bisection_tree::{ + Support, + Constant, + Bounds, + LocalAnalysis, + GlobalAnalysis, + Weighted, + Bounded, +}; +use alg_tools::mapping::Apply; +use alg_tools::maputil::array_init; + +use crate::fourier::Fourier; +use super::base::*; +use super::ball_indicator::CubeIndicator; + +/// Storage presentation of the the anisotropic gaussian kernel of `variance` $σ^2$. +/// +/// This is the function $f(x) = C e^{-\\|x\\|\_2^2/(2σ^2)}$ for $x ∈ ℝ^N$ +/// with $C=1/(2πσ^2)^{N/2}$. +#[derive(Copy,Clone,Debug,Serialize,Eq)] +pub struct Gaussian<S : Constant, const N : usize> { + /// The variance $σ^2$. + pub variance : S, +} + +impl<S1, S2, const N : usize> PartialEq<Gaussian<S2, N>> for Gaussian<S1, N> +where S1 : Constant, + S2 : Constant<Type=S1::Type> { + fn eq(&self, other : &Gaussian<S2, N>) -> bool { + self.variance.value() == other.variance.value() + } +} + +impl<S1, S2, const N : usize> PartialOrd<Gaussian<S2, N>> for Gaussian<S1, N> +where S1 : Constant, + S2 : Constant<Type=S1::Type> { + + fn partial_cmp(&self, other : &Gaussian<S2, N>) -> Option<std::cmp::Ordering> { + // A gaussian is ≤ another gaussian if the Fourier transforms satisfy the + // corresponding inequality. That in turns holds if and only if the variances + // satisfy the opposite inequality. + let σ1sq = self.variance.value(); + let σ2sq = other.variance.value(); + σ2sq.partial_cmp(&σ1sq) + } +} + + +#[replace_float_literals(S::Type::cast_from(literal))] +impl<'a, S, const N : usize> Apply<&'a Loc<S::Type, N>> for Gaussian<S, N> +where S : Constant { + type Output = S::Type; + // This is not normalised to neither to have value 1 at zero or integral 1 + // (unless the cut-off ε=0). + #[inline] + fn apply(&self, x : &'a Loc<S::Type, N>) -> Self::Output { + let d_squared = x.norm2_squared(); + let σ2 = self.variance.value(); + let scale = self.scale(); + (-d_squared / (2.0 * σ2)).exp() / scale + } +} + +impl<S, const N : usize> Apply<Loc<S::Type, N>> for Gaussian<S, N> +where S : Constant { + type Output = S::Type; + // This is not normalised to neither to have value 1 at zero or integral 1 + // (unless the cut-off ε=0). + #[inline] + fn apply(&self, x : Loc<S::Type, N>) -> Self::Output { + self.apply(&x) + } +} + + +#[replace_float_literals(S::Type::cast_from(literal))] +impl<'a, S, const N : usize> Gaussian<S, N> +where S : Constant { + + /// Returns the (reciprocal) scaling constant $1/C=(2πσ^2)^{N/2}$. + #[inline] + pub fn scale(&self) -> S::Type { + let π = S::Type::PI; + let σ2 = self.variance.value(); + (2.0*π*σ2).powi(N as i32).sqrt() + } +} + +impl<'a, S, const N : usize> Support<S::Type, N> for Gaussian<S, N> +where S : Constant { + #[inline] + fn support_hint(&self) -> Cube<S::Type,N> { + array_init(|| [S::Type::NEG_INFINITY, S::Type::INFINITY]).into() + } + + #[inline] + fn in_support(&self, _x : &Loc<S::Type,N>) -> bool { + true + } +} + +#[replace_float_literals(S::Type::cast_from(literal))] +impl<S, const N : usize> GlobalAnalysis<S::Type, Bounds<S::Type>> for Gaussian<S, N> +where S : Constant { + #[inline] + fn global_analysis(&self) -> Bounds<S::Type> { + Bounds(0.0, 1.0/self.scale()) + } +} + +impl<S, const N : usize> LocalAnalysis<S::Type, Bounds<S::Type>, N> for Gaussian<S, N> +where S : Constant { + #[inline] + fn local_analysis(&self, cube : &Cube<S::Type, N>) -> Bounds<S::Type> { + // The function is maximised/minimised where the 2-norm is minimised/maximised. + let lower = self.apply(cube.maxnorm_point()); + let upper = self.apply(cube.minnorm_point()); + Bounds(lower, upper) + } +} + +#[replace_float_literals(C::Type::cast_from(literal))] +impl<'a, C : Constant, const N : usize> Norm<C::Type, L1> +for Gaussian<C, N> { + #[inline] + fn norm(&self, _ : L1) -> C::Type { + 1.0 + } +} + +#[replace_float_literals(C::Type::cast_from(literal))] +impl<'a, C : Constant, const N : usize> Norm<C::Type, Linfinity> +for Gaussian<C, N> { + #[inline] + fn norm(&self, _ : Linfinity) -> C::Type { + self.bounds().upper() + } +} + +#[replace_float_literals(C::Type::cast_from(literal))] +impl<'a, C : Constant, const N : usize> Fourier<C::Type> +for Gaussian<C, N> { + type Domain = Loc<C::Type, N>; + type Transformed = Weighted<Gaussian<C::Type, N>, C::Type>; + + #[inline] + fn fourier(&self) -> Self::Transformed { + let π = C::Type::PI; + let σ2 = self.variance.value(); + let g = Gaussian { variance : 1.0 / (4.0*π*π*σ2) }; + g.weigh(g.scale()) + } +} + +/// Representation of the “cut” gaussian $f χ\_{[-a, a]^n}$ +/// where $a>0$ and $f$ is a gaussian kernel on $ℝ^n$. +pub type BasicCutGaussian<C, S, const N : usize> = SupportProductFirst<CubeIndicator<C, N>, + Gaussian<S, N>>; + + +/// This implements $χ\_{[-b, b]^n} \* (f χ\_{[-a, a]^n})$ +/// where $a,b>0$ and $f$ is a gaussian kernel on $ℝ^n$. +#[replace_float_literals(F::cast_from(literal))] +impl<'a, F : Float, R, C, S, const N : usize> Apply<&'a Loc<F, N>> +for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> +where R : Constant<Type=F>, + C : Constant<Type=F>, + S : Constant<Type=F> { + + type Output = F; + + #[inline] + fn apply(&self, y : &'a Loc<F, N>) -> F { + let Convolution(ref ind, + SupportProductFirst(ref cut, + ref gaussian)) = self; + let a = cut.r.value(); + let b = ind.r.value(); + let σ = gaussian.variance.value().sqrt(); + let π = F::PI; + let t = F::SQRT_2 * σ; + let c = σ * (8.0/π).sqrt(); + + // This is just a product of one-dimensional versions + let unscaled = y.product_map(|x| { + let c1 = -(a.min(b + x)); //(-a).max(-x-b); + let c2 = a.min(b - x); + if c1 >= c2 { + 0.0 + } else { + let e1 = F::cast_from(erf((c1 / t).as_())); + let e2 = F::cast_from(erf((c2 / t).as_())); + debug_assert!(e2 >= e1); + c * (e2 - e1) + } + }); + + unscaled / gaussian.scale() + } +} + +impl<F : Float, R, C, S, const N : usize> Apply<Loc<F, N>> +for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> +where R : Constant<Type=F>, + C : Constant<Type=F>, + S : Constant<Type=F> { + + type Output = F; + + #[inline] + fn apply(&self, y : Loc<F, N>) -> F { + self.apply(&y) + } +} + +impl<F : Float, R, C, S, const N : usize> +Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> +where R : Constant<Type=F>, + C : Constant<Type=F>, + S : Constant<Type=F> { + + #[inline] + fn get_r(&self) -> F { + let Convolution(ref ind, + SupportProductFirst(ref cut, ..)) = self; + ind.r.value() + cut.r.value() + } +} + +impl<F : Float, R, C, S, const N : usize> Support<F, N> +for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> +where R : Constant<Type=F>, + C : Constant<Type=F>, + S : Constant<Type=F> { + #[inline] + fn support_hint(&self) -> Cube<F, N> { + let r = self.get_r(); + array_init(|| [-r, r]).into() + } + + #[inline] + fn in_support(&self, y : &Loc<F, N>) -> bool { + let r = self.get_r(); + y.iter().all(|x| x.abs() <= r) + } + + #[inline] + fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { + let r = self.get_r(); + // From c1 = -a.min(b + x) and c2 = a.min(b - x) with c_1 < c_2, + // solve bounds for x. that is 0 ≤ a.min(b + x) + a.min(b - x). + // If b + x ≤ a and b - x ≤ a, the sum is 2b ≥ 0. + // If b + x ≥ a and b - x ≥ a, the sum is 2a ≥ 0. + // If b + x ≤ a and b - x ≥ a, the sum is b + x + a ⟹ need x ≥ -a - b = -r. + // If b + x ≥ a and b - x ≤ a, the sum is a + b - x ⟹ need x ≤ a + b = r. + cube.map(|c, d| symmetric_peak_hint(r, c, d)) + } +} + +impl<F : Float, R, C, S, const N : usize> GlobalAnalysis<F, Bounds<F>> +for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> +where R : Constant<Type=F>, + C : Constant<Type=F>, + S : Constant<Type=F> { + #[inline] + fn global_analysis(&self) -> Bounds<F> { + Bounds(F::ZERO, self.apply(Loc::ORIGIN)) + } +} + +impl<F : Float, R, C, S, const N : usize> LocalAnalysis<F, Bounds<F>, N> +for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> +where R : Constant<Type=F>, + C : Constant<Type=F>, + S : Constant<Type=F> { + #[inline] + fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { + // The function is maximised/minimised where the absolute value is minimised/maximised. + let lower = self.apply(cube.maxnorm_point()); + let upper = self.apply(cube.minnorm_point()); + Bounds(lower, upper) + } +} +