--- a/src/kernels/gaussian.rs Tue Aug 01 10:32:12 2023 +0300 +++ b/src/kernels/gaussian.rs Thu Aug 29 00:00:00 2024 -0500 @@ -298,8 +298,8 @@ if c1 >= c2 { 0.0 } else { - // erf'(z) = (2/√π)*exp(-z^2), and we get extra factor -1/√(2*σ) = -1/t - // from the chain rule + // erf'(z) = (2/√π)*exp(-z^2), and we get extra factor -1/(√2*σ) = -1/t + // from the chain rule (the minus comes from inside c_1 or c_2). let de1 = (-(c1/t).powi(2)).exp(); let de2 = (-(c2/t).powi(2)).exp(); c_div_t * (de1 - de2) @@ -323,15 +323,70 @@ } #[replace_float_literals(F::cast_from(literal))] +impl<'a, F : Float, R, C, S, const N : usize> Lipschitz<L1> +for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> +where R : Constant<Type=F>, + C : Constant<Type=F>, + S : Constant<Type=F> { + type FloatType = F; + + fn lipschitz_factor(&self, L1 : L1) -> Option<F> { + // To get the product Lipschitz factor, we note that for any ψ_i, we have + // ∏_{i=1}^N φ_i(x_i) - ∏_{i=1}^N φ_i(y_i) + // = [φ_1(x_1)-φ_1(y_1)] ∏_{i=2}^N φ_i(x_i) + // + φ_1(y_1)[ ∏_{i=2}^N φ_i(x_i) - ∏_{i=2}^N φ_i(y_i)] + // = ∑_{j=1}^N [φ_j(x_j)-φ_j(y_j)]∏_{i > j} φ_i(x_i) ∏_{i < j} φ_i(y_i) + // Thus + // |∏_{i=1}^N φ_i(x_i) - ∏_{i=1}^N φ_i(y_i)| + // ≤ ∑_{j=1}^N |φ_j(x_j)-φ_j(y_j)| ∏_{j ≠ i} \max_i |φ_i| + // + // Thus we need 1D Lipschitz factors, and the maximum for φ = θ * ψ. + // + // We have + // θ * ψ(x) = 0 if c_1(x) ≥ c_2(x) + // = (1/2)[erf(c_2(x)/(√2σ)) - erf(c_1(x)/(√2σ))] if c_1(x) < c_2(x), + // where c_1(x) = max{-x-b,-a} = -min{b+x,a} and c_2(x)=min{b-x,a}, C is the Gaussian + // normalisation factor, and erf(s) = (2/√π) ∫_0^s e^{-t^2} dt. + // Thus, if c_1(x) < c_2(x) and c_1(y) < c_2(y), we have + // θ * ψ(x) - θ * ψ(y) = (1/√π)[∫_{c_1(x)/(√2σ)}^{c_1(y)/(√2σ) e^{-t^2} dt + // - ∫_{c_2(x)/(√2σ)}^{c_2(y)/(√2σ)] e^{-t^2} dt] + // Thus + // |θ * ψ(x) - θ * ψ(y)| ≤ (1/√π)/(√2σ)(|c_1(x)-c_1(y)|+|c_2(x)-c_2(y)|) + // ≤ 2(1/√π)/(√2σ)|x-y| + // ≤ √2/(√πσ)|x-y|. + // + // For the product we also need the value θ * ψ(0), which is + // (1/2)[erf(min{a,b}/(√2σ))-erf(max{-b,-a}/(√2σ)] + // = (1/2)[erf(min{a,b}/(√2σ))-erf(-min{a,b}/(√2σ))] + // = erf(min{a,b}/(√2σ)) + // + // If c_1(x) ≥ c_2(x), then x ∉ [-(a+b), a+b]. If also y is outside that range, + // θ * ψ(x) = θ * ψ(y). If only y is in the range [-(a+b), a+b], we can replace + // x by -(a+b) or (a+b), either of which is closer to y and still θ * ψ(x)=0. + // Thus same calculations as above work for the Lipschitz factor. + let Convolution(ref ind, + SupportProductFirst(ref cut, + ref gaussian)) = self; + let a = cut.r.value(); + let b = ind.r.value(); + let σ = gaussian.variance.value().sqrt(); + let π = F::PI; + let t = F::SQRT_2 * σ; + let l1d = F::SQRT_2 / (π.sqrt() * σ); + let e0 = F::cast_from(erf((a.min(b) / t).as_())); + Some(l1d * e0.powi(N as i32-1)) + } +} + impl<'a, F : Float, R, C, S, const N : usize> Lipschitz<L2> for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> where R : Constant<Type=F>, C : Constant<Type=F>, S : Constant<Type=F> { type FloatType = F; - - fn lipschitz_factor(&self, L2 : L2) -> Option<F> { - todo!("This requirement some error function work.") + #[inline] + fn lipschitz_factor(&self, L2 : L2) -> Option<Self::FloatType> { + self.lipschitz_factor(L1).map(|l1| l1 * <S::Type>::cast_from(N).sqrt()) } }