--- a/src/kernels/gaussian.rs Thu Aug 29 00:00:00 2024 -0500 +++ b/src/kernels/gaussian.rs Tue Dec 31 09:25:45 2024 -0500 @@ -17,10 +17,15 @@ Weighted, Bounded, }; -use alg_tools::mapping::{Apply, Differentiable}; +use alg_tools::mapping::{ + Mapping, + Instance, + Differential, + DifferentiableImpl, +}; use alg_tools::maputil::array_init; -use crate::types::Lipschitz; +use crate::types::*; use crate::fourier::Fourier; use super::base::*; use super::ball_indicator::CubeIndicator; @@ -59,63 +64,108 @@ #[replace_float_literals(S::Type::cast_from(literal))] -impl<'a, S, const N : usize> Apply<&'a Loc<S::Type, N>> for Gaussian<S, N> -where S : Constant { - type Output = S::Type; +impl<'a, S, const N : usize> Mapping<Loc<S::Type, N>> for Gaussian<S, N> +where + S : Constant +{ + type Codomain = S::Type; + // This is not normalised to neither to have value 1 at zero or integral 1 // (unless the cut-off ε=0). #[inline] - fn apply(&self, x : &'a Loc<S::Type, N>) -> Self::Output { - let d_squared = x.norm2_squared(); + fn apply<I : Instance<Loc<S::Type, N>>>(&self, x : I) -> Self::Codomain { + let d_squared = x.eval(|x| x.norm2_squared()); let σ2 = self.variance.value(); let scale = self.scale(); (-d_squared / (2.0 * σ2)).exp() / scale } } -impl<S, const N : usize> Apply<Loc<S::Type, N>> for Gaussian<S, N> +#[replace_float_literals(S::Type::cast_from(literal))] +impl<'a, S, const N : usize> DifferentiableImpl<Loc<S::Type, N>> for Gaussian<S, N> where S : Constant { - type Output = S::Type; + type Derivative = Loc<S::Type, N>; + #[inline] - fn apply(&self, x : Loc<S::Type, N>) -> Self::Output { - self.apply(&x) + fn differential_impl<I : Instance<Loc<S::Type, N>>>(&self, x0 : I) -> Self::Derivative { + let x = x0.cow(); + let f = -self.apply(&*x) / self.variance.value(); + *x * f } } -#[replace_float_literals(S::Type::cast_from(literal))] -impl<'a, S, const N : usize> Differentiable<&'a Loc<S::Type, N>> for Gaussian<S, N> -where S : Constant { - type Output = Loc<S::Type, N>; - #[inline] - fn differential(&self, x : &'a Loc<S::Type, N>) -> Self::Output { - x * (self.apply(x) / self.variance.value()) - } -} -impl<S, const N : usize> Differentiable<Loc<S::Type, N>> for Gaussian<S, N> -where S : Constant { - type Output = Loc<S::Type, N>; - // This is not normalised to neither to have value 1 at zero or integral 1 - // (unless the cut-off ε=0). - #[inline] - fn differential(&self, x : Loc<S::Type, N>) -> Self::Output { - x * (self.apply(&x) / self.variance.value()) - } -} +// To calculate the the Lipschitz factors, we consider +// f(t) = e^{-t²/2} +// f'(t) = -t f(t) which has max at t=1 by f''(t)=0 +// f''(t) = (t²-1)f(t) which has max at t=√3 by f'''(t)=0 +// f'''(t) = -(t³-3t) +// So f has the Lipschitz factor L=f'(1), and f' has the Lipschitz factor L'=f''(√3). +// +// Now g(x) = Cf(‖x‖/σ) for a scaling factor C is the Gaussian. +// Thus ‖g(x)-g(y)‖ = C‖f(‖x‖/σ)-f(‖y‖/σ)‖ ≤ (C/σ)L‖x-y‖, +// so g has the Lipschitz factor (C/σ)f'(1) = (C/σ)exp(-0.5). +// +// Also ∇g(x)= Cx/(σ‖x‖)f'(‖x‖/σ) (*) +// = -(C/σ²)xf(‖x‖/σ) +// = -C/σ (x/σ) f(‖x/σ‖) +// ∇²g(x) = -(C/σ)[Id/σ f(‖x‖/σ) + x ⊗ x/(σ²‖x‖) f'(‖x‖/σ)] +// = (C/σ²)[-Id + x ⊗ x/σ²]f(‖x‖/σ). +// Thus ‖∇²g(x)‖ = (C/σ²)‖-Id + x ⊗ x/σ²‖f(‖x‖/σ), where +// ‖-Id + x ⊗ x/σ²‖ = ‖[-Id + x ⊗ x/σ²](x/‖x‖)‖ = |-1 + ‖x²/σ^2‖|. +// This means that ‖∇²g(x)‖ = (C/σ²)|f''(‖x‖/σ)|, which is maximised with ‖x‖/σ=√3. +// Hence the Lipschitz factor of ∇g is (C/σ²)f''(√3) = (C/σ²)2e^{-3/2}. #[replace_float_literals(S::Type::cast_from(literal))] impl<S, const N : usize> Lipschitz<L2> for Gaussian<S, N> where S : Constant { type FloatType = S::Type; fn lipschitz_factor(&self, L2 : L2) -> Option<Self::FloatType> { - // f(x)=f_1(‖x‖_2/σ) * √(2π) / √(2πσ)^N, where f_1 is one-dimensional Gaussian with - // variance 1. The Lipschitz factor of f_1 is e^{-1/2}/√(2π), see, e.g., - // https://math.stackexchange.com/questions/3630967/is-the-gaussian-density-lipschitz-continuous - // Thus the Lipschitz factor we want is e^{-1/2} / (√(2πσ)^N * σ). Some((-0.5).exp() / (self.scale() * self.variance.value().sqrt())) } } + +#[replace_float_literals(S::Type::cast_from(literal))] +impl<'a, S : Constant, const N : usize> Lipschitz<L2> +for Differential<'a, Loc<S::Type, N>, Gaussian<S, N>> { + type FloatType = S::Type; + + fn lipschitz_factor(&self, _l2 : L2) -> Option<S::Type> { + let g = self.base_fn(); + let σ2 = g.variance.value(); + let scale = g.scale(); + Some(2.0*(-3.0/2.0).exp()/(σ2*scale)) + } +} + +// From above, norm bounds on the differnential can be calculated as achieved +// for f' at t=1, i.e., the bound is |f'(1)|. +// For g then |C/σ f'(1)|. +// It follows that the norm bounds on the differential are just the Lipschitz +// factors of the undifferentiated function, given how the latter is calculed above. + +#[replace_float_literals(S::Type::cast_from(literal))] +impl<'b, S : Constant, const N : usize> NormBounded<L2> +for Differential<'b, Loc<S::Type, N>, Gaussian<S, N>> { + type FloatType = S::Type; + + fn norm_bound(&self, _l2 : L2) -> S::Type { + self.base_fn().lipschitz_factor(L2).unwrap() + } +} + +#[replace_float_literals(S::Type::cast_from(literal))] +impl<'b, 'a, S : Constant, const N : usize> NormBounded<L2> +for Differential<'b, Loc<S::Type, N>, &'a Gaussian<S, N>> { + type FloatType = S::Type; + + fn norm_bound(&self, _l2 : L2) -> S::Type { + self.base_fn().lipschitz_factor(L2).unwrap() + } +} + + #[replace_float_literals(S::Type::cast_from(literal))] impl<'a, S, const N : usize> Gaussian<S, N> where S : Constant { @@ -204,16 +254,16 @@ /// This implements $g := χ\_{[-b, b]^n} \* (f χ\_{[-a, a]^n})$ where $a,b>0$ and $f$ is /// a gaussian kernel on $ℝ^n$. For an expression for $g$, see Lemma 3.9 in the manuscript. #[replace_float_literals(F::cast_from(literal))] -impl<'a, F : Float, R, C, S, const N : usize> Apply<&'a Loc<F, N>> +impl<'a, F : Float, R, C, S, const N : usize> Mapping<Loc<F, N>> for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> where R : Constant<Type=F>, C : Constant<Type=F>, S : Constant<Type=F> { - type Output = F; + type Codomain = F; #[inline] - fn apply(&self, y : &'a Loc<F, N>) -> F { + fn apply<I : Instance<Loc<F, N>>>(&self, y : I) -> F { let Convolution(ref ind, SupportProductFirst(ref cut, ref gaussian)) = self; @@ -224,7 +274,7 @@ let c = 0.5; // 1/(σ√(2π) * σ√(π/2) = 1/2 // This is just a product of one-dimensional versions - y.product_map(|x| { + y.cow().product_map(|x| { let c1 = -(a.min(b + x)); //(-a).max(-x-b); let c2 = a.min(b - x); if c1 >= c2 { @@ -239,43 +289,31 @@ } } -impl<F : Float, R, C, S, const N : usize> Apply<Loc<F, N>> +/// This implements the differential of $g := χ\_{[-b, b]^n} \* (f χ\_{[-a, a]^n})$ where $a,b>0$ +/// and $f$ is a gaussian kernel on $ℝ^n$. For an expression for the value of $g$, from which the +/// derivative readily arises (at points of differentiability), see Lemma 3.9 in the manuscript. +#[replace_float_literals(F::cast_from(literal))] +impl<'a, F : Float, R, C, S, const N : usize> DifferentiableImpl<Loc<F, N>> for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> where R : Constant<Type=F>, C : Constant<Type=F>, S : Constant<Type=F> { - type Output = F; - - #[inline] - fn apply(&self, y : Loc<F, N>) -> F { - self.apply(&y) - } -} + type Derivative = Loc<F, N>; -/// This implements the differential of $g := χ\_{[-b, b]^n} \* (f χ\_{[-a, a]^n})$ where $a,b>0$ -/// and $f$ is a gaussian kernel on $ℝ^n$. For an expression for the value of $g$, from which the -/// derivative readily arises (at points of differentiability), see Lemma 3.9 in the manuscript. -#[replace_float_literals(F::cast_from(literal))] -impl<'a, F : Float, R, C, S, const N : usize> Differentiable<&'a Loc<F, N>> -for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> -where R : Constant<Type=F>, - C : Constant<Type=F>, - S : Constant<Type=F> { - - type Output = Loc<F, N>; - + /// Although implemented, this function is not differentiable. #[inline] - fn differential(&self, y : &'a Loc<F, N>) -> Loc<F, N> { + fn differential_impl<I : Instance<Loc<F, N>>>(&self, y0 : I) -> Loc<F, N> { let Convolution(ref ind, SupportProductFirst(ref cut, ref gaussian)) = self; + let y = y0.cow(); let a = cut.r.value(); let b = ind.r.value(); let σ = gaussian.variance.value().sqrt(); let t = F::SQRT_2 * σ; let c = 0.5; // 1/(σ√(2π) * σ√(π/2) = 1/2 - let c_div_t = c / t; + let c_mul_erf_scale_div_t = c * F::FRAC_2_SQRT_PI / t; // Calculate the values for all component functions of the // product. This is just the loop from apply above. @@ -292,35 +330,31 @@ } }); // This computes the gradient for each coordinate - product_differential(y, &unscaled_vs, |x| { + product_differential(&*y, &unscaled_vs, |x| { let c1 = -(a.min(b + x)); //(-a).max(-x-b); let c2 = a.min(b - x); if c1 >= c2 { 0.0 } else { - // erf'(z) = (2/√π)*exp(-z^2), and we get extra factor -1/(√2*σ) = -1/t - // from the chain rule (the minus comes from inside c_1 or c_2). - let de1 = (-(c1/t).powi(2)).exp(); - let de2 = (-(c2/t).powi(2)).exp(); - c_div_t * (de1 - de2) + // erf'(z) = (2/√π)*exp(-z^2), and we get extra factor 1/(√2*σ) = -1/t + // from the chain rule (the minus comes from inside c_1 or c_2, and changes the + // order of de2 and de1 in the final calculation). + let de1 = if b + x < a { + (-((b+x)/t).powi(2)).exp() + } else { + 0.0 + }; + let de2 = if b - x < a { + (-((b-x)/t).powi(2)).exp() + } else { + 0.0 + }; + c_mul_erf_scale_div_t * (de1 - de2) } }) } } -impl<F : Float, R, C, S, const N : usize> Differentiable<Loc<F, N>> -for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> -where R : Constant<Type=F>, - C : Constant<Type=F>, - S : Constant<Type=F> { - - type Output = Loc<F, N>; - - #[inline] - fn differential(&self, y : Loc<F, N>) -> Loc<F, N> { - self.differential(&y) - } -} #[replace_float_literals(F::cast_from(literal))] impl<'a, F : Float, R, C, S, const N : usize> Lipschitz<L1> @@ -378,6 +412,7 @@ } } +/* impl<'a, F : Float, R, C, S, const N : usize> Lipschitz<L2> for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> where R : Constant<Type=F>, @@ -389,6 +424,7 @@ self.lipschitz_factor(L1).map(|l1| l1 * <S::Type>::cast_from(N).sqrt()) } } +*/ impl<F : Float, R, C, S, const N : usize> Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>>