Thu, 23 Jan 2025 23:34:05 +0100
Merging adjustments, parameter tuning, etc.
35 | 1 | /*! |
2 | Solver for the point source localisation problem using a | |
3 | primal-dual proximal splitting with a forward step. | |
4 | */ | |
5 | ||
6 | use numeric_literals::replace_float_literals; | |
7 | use serde::{Serialize, Deserialize}; | |
8 | ||
9 | use alg_tools::iterate::AlgIteratorFactory; | |
10 | use alg_tools::euclidean::Euclidean; | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
11 | use alg_tools::mapping::{Mapping, DifferentiableRealMapping, Instance}; |
35 | 12 | use alg_tools::norms::Norm; |
13 | use alg_tools::direct_product::Pair; | |
14 | use alg_tools::nalgebra_support::ToNalgebraRealField; | |
15 | use alg_tools::linops::{ | |
16 | BoundedLinear, AXPY, GEMV, Adjointable, IdOp, | |
17 | }; | |
18 | use alg_tools::convex::{Conjugable, Prox}; | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
19 | use alg_tools::norms::{L2, PairNorm}; |
35 | 20 | |
21 | use crate::types::*; | |
22 | use crate::measures::{DiscreteMeasure, Radon, RNDM}; | |
23 | use crate::measures::merging::SpikeMerging; | |
24 | use crate::forward_model::{ | |
25 | ForwardModel, | |
26 | AdjointProductPairBoundedBy, | |
27 | }; | |
28 | use crate::plot::{ | |
29 | SeqPlotter, | |
30 | Plotting, | |
31 | PlotLookup | |
32 | }; | |
33 | use crate::fb::*; | |
34 | use crate::regularisation::RegTerm; | |
35 | use crate::dataterm::calculate_residual; | |
36 | ||
37 | /// Settings for [`pointsource_forward_pdps_pair`]. | |
38 | #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] | |
39 | #[serde(default)] | |
40 | pub struct ForwardPDPSConfig<F : Float> { | |
41 | /// Primal step length scaling. | |
42 | pub τ0 : F, | |
43 | /// Primal step length scaling. | |
44 | pub σp0 : F, | |
45 | /// Dual step length scaling. | |
46 | pub σd0 : F, | |
47 | /// Generic parameters | |
48 | pub insertion : FBGenericConfig<F>, | |
49 | } | |
50 | ||
51 | #[replace_float_literals(F::cast_from(literal))] | |
52 | impl<F : Float> Default for ForwardPDPSConfig<F> { | |
53 | fn default() -> Self { | |
54 | ForwardPDPSConfig { | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
55 | τ0 : 0.99, |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
56 | σd0 : 0.05, |
35 | 57 | σp0 : 0.99, |
58 | insertion : Default::default() | |
59 | } | |
60 | } | |
61 | } | |
62 | ||
63 | type MeasureZ<F, Z, const N : usize> = Pair<RNDM<F, N>, Z>; | |
64 | ||
65 | /// Iteratively solve the pointsource localisation with an additional variable | |
66 | /// using primal-dual proximal splitting with a forward step. | |
67 | #[replace_float_literals(F::cast_from(literal))] | |
68 | pub fn pointsource_forward_pdps_pair< | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
69 | F, I, A, S, Reg, P, Z, R, Y, /*KOpM, */ KOpZ, H, const N : usize |
35 | 70 | >( |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
71 | opA : &A, |
35 | 72 | b : &A::Observable, |
73 | reg : Reg, | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
74 | prox_penalty : &P, |
35 | 75 | config : &ForwardPDPSConfig<F>, |
76 | iterator : I, | |
77 | mut plotter : SeqPlotter<F, N>, | |
78 | //opKμ : KOpM, | |
79 | opKz : &KOpZ, | |
80 | fnR : &R, | |
81 | fnH : &H, | |
82 | mut z : Z, | |
83 | mut y : Y, | |
84 | ) -> MeasureZ<F, Z, N> | |
85 | where | |
86 | F : Float + ToNalgebraRealField, | |
87 | I : AlgIteratorFactory<IterInfo<F, N>>, | |
88 | A : ForwardModel< | |
89 | MeasureZ<F, Z, N>, | |
90 | F, | |
91 | PairNorm<Radon, L2, L2>, | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
92 | PreadjointCodomain = Pair<S, Z>, |
35 | 93 | > |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
94 | + AdjointProductPairBoundedBy<MeasureZ<F, Z, N>, P, IdOp<Z>, FloatType=F>, |
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
95 | S: DifferentiableRealMapping<F, N>, |
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
96 | for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable> + Instance<A::Observable>, |
35 | 97 | PlotLookup : Plotting<N>, |
98 | RNDM<F, N> : SpikeMerging<F>, | |
99 | Reg : RegTerm<F, N>, | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
100 | P : ProxPenalty<F, S, Reg, N>, |
35 | 101 | KOpZ : BoundedLinear<Z, L2, L2, F, Codomain=Y> |
102 | + GEMV<F, Z> | |
103 | + Adjointable<Z, Y, AdjointCodomain = Z>, | |
104 | for<'b> KOpZ::Adjoint<'b> : GEMV<F, Y>, | |
105 | Y : AXPY<F> + Euclidean<F, Output=Y> + Clone + ClosedAdd, | |
106 | for<'b> &'b Y : Instance<Y>, | |
107 | Z : AXPY<F, Owned=Z> + Euclidean<F, Output=Z> + Clone + Norm<F, L2>, | |
108 | for<'b> &'b Z : Instance<Z>, | |
109 | R : Prox<Z, Codomain=F>, | |
110 | H : Conjugable<Y, F, Codomain=F>, | |
111 | for<'b> H::Conjugate<'b> : Prox<Y>, | |
112 | { | |
113 | ||
114 | // Check parameters | |
115 | assert!(config.τ0 > 0.0 && | |
116 | config.τ0 < 1.0 && | |
117 | config.σp0 > 0.0 && | |
118 | config.σp0 < 1.0 && | |
119 | config.σd0 > 0.0 && | |
120 | config.σp0 * config.σd0 <= 1.0, | |
121 | "Invalid step length parameters"); | |
122 | ||
123 | // Initialise iterates | |
124 | let mut μ = DiscreteMeasure::new(); | |
125 | let mut residual = calculate_residual(Pair(&μ, &z), opA, b); | |
126 | ||
127 | // Set up parameters | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
128 | let bigM = 0.0; //opKμ.adjoint_product_bound(prox_penalty).unwrap().sqrt(); |
35 | 129 | let nKz = opKz.opnorm_bound(L2, L2); |
130 | let opIdZ = IdOp::new(); | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
131 | let (l, l_z) = opA.adjoint_product_pair_bound(prox_penalty, &opIdZ).unwrap(); |
35 | 132 | // We need to satisfy |
133 | // | |
134 | // τσ_dM(1-σ_p L_z)/(1 - τ L) + [σ_p L_z + σ_pσ_d‖K_z‖^2] < 1 | |
135 | // ^^^^^^^^^^^^^^^^^^^^^^^^^ | |
136 | // with 1 > σ_p L_z and 1 > τ L. | |
137 | // | |
138 | // To do so, we first solve σ_p and σ_d from standard PDPS step length condition | |
139 | // ^^^^^ < 1. then we solve τ from the rest. | |
140 | let σ_d = config.σd0 / nKz; | |
141 | let σ_p = config.σp0 / (l_z + config.σd0 * nKz); | |
142 | // Observe that = 1 - ^^^^^^^^^^^^^^^^^^^^^ = 1 - σ_{p,0} | |
143 | // We get the condition τσ_d M (1-σ_p L_z) < (1-σ_{p,0})*(1-τ L) | |
144 | // ⟺ τ [ σ_d M (1-σ_p L_z) + (1-σ_{p,0}) L ] < (1-σ_{p,0}) | |
145 | let φ = 1.0 - config.σp0; | |
146 | let a = 1.0 - σ_p * l_z; | |
147 | let τ = config.τ0 * φ / ( σ_d * bigM * a + φ * l ); | |
148 | // Acceleration is not currently supported | |
149 | // let γ = dataterm.factor_of_strong_convexity(); | |
150 | let ω = 1.0; | |
151 | ||
152 | // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled | |
153 | // by τ compared to the conditional gradient approach. | |
154 | let tolerance = config.insertion.tolerance * τ * reg.tolerance_scaling(); | |
155 | let mut ε = tolerance.initial(); | |
156 | ||
157 | let starH = fnH.conjugate(); | |
158 | ||
159 | // Statistics | |
160 | let full_stats = |residual : &A::Observable, μ : &RNDM<F, N>, z : &Z, ε, stats| IterInfo { | |
161 | value : residual.norm2_squared_div2() + fnR.apply(z) | |
162 | + reg.apply(μ) + fnH.apply(/* opKμ.apply(μ) + */ opKz.apply(z)), | |
163 | n_spikes : μ.len(), | |
164 | ε, | |
165 | // postprocessing: config.insertion.postprocessing.then(|| μ.clone()), | |
166 | .. stats | |
167 | }; | |
168 | let mut stats = IterInfo::new(); | |
169 | ||
170 | // Run the algorithm | |
171 | for state in iterator.iter_init(|| full_stats(&residual, &μ, &z, ε, stats.clone())) { | |
172 | // Calculate initial transport | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
173 | let Pair(mut τv, τz) = opA.preadjoint().apply(residual * τ); |
35 | 174 | let μ_base = μ.clone(); |
175 | ||
176 | // Construct μ^{k+1} by solving finite-dimensional subproblems and insert new spikes. | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
177 | let (maybe_d, _within_tolerances) = prox_penalty.insert_and_reweigh( |
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
178 | &mut μ, &mut τv, &μ_base, None, |
35 | 179 | τ, ε, &config.insertion, |
180 | ®, &state, &mut stats, | |
181 | ); | |
182 | ||
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
183 | // Merge spikes. |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
184 | // This crucially expects the merge routine to be stable with respect to spike locations, |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
185 | // and not to performing any pruning. That is be to done below simultaneously for γ. |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
186 | // Merge spikes. |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
187 | // This crucially expects the merge routine to be stable with respect to spike locations, |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
188 | // and not to performing any pruning. That is be to done below simultaneously for γ. |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
189 | let ins = &config.insertion; |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
190 | if ins.merge_now(&state) { |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
191 | stats.merged += prox_penalty.merge_spikes_no_fitness( |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
192 | &mut μ, &mut τv, &μ_base, None, τ, ε, ins, ®, |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
193 | //Some(|μ̃ : &RNDM<F, N>| calculate_residual(Pair(μ̃, &z), opA, b).norm2_squared_div2()), |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
194 | ); |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
195 | } |
35 | 196 | |
197 | // Prune spikes with zero weight. | |
198 | stats.pruned += prune_with_stats(&mut μ); | |
199 | ||
200 | // Do z variable primal update | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
201 | let mut z_new = τz; |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
202 | opKz.adjoint().gemv(&mut z_new, -σ_p, &y, -σ_p/τ); |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
203 | z_new = fnR.prox(σ_p, z_new + &z); |
35 | 204 | // Do dual update |
205 | // opKμ.gemv(&mut y, σ_d*(1.0 + ω), &μ, 1.0); // y = y + σ_d K[(1+ω)(μ,z)^{k+1}] | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
206 | opKz.gemv(&mut y, σ_d*(1.0 + ω), &z_new, 1.0); |
35 | 207 | // opKμ.gemv(&mut y, -σ_d*ω, μ_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
208 | opKz.gemv(&mut y, -σ_d*ω, z, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b |
35 | 209 | y = starH.prox(σ_d, y); |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
210 | z = z_new; |
35 | 211 | |
212 | // Update residual | |
213 | residual = calculate_residual(Pair(&μ, &z), opA, b); | |
214 | ||
215 | // Update step length parameters | |
216 | // let ω = pdpsconfig.acceleration.accelerate(&mut τ, &mut σ, γ); | |
217 | ||
218 | // Give statistics if requested | |
219 | let iter = state.iteration(); | |
220 | stats.this_iters += 1; | |
221 | ||
222 | state.if_verbose(|| { | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
223 | plotter.plot_spikes(iter, maybe_d.as_ref(), Some(&τv), &μ); |
35 | 224 | full_stats(&residual, &μ, &z, ε, std::mem::replace(&mut stats, IterInfo::new())) |
225 | }); | |
226 | ||
227 | // Update main tolerance for next iteration | |
228 | ε = tolerance.update(ε, iter); | |
229 | } | |
230 | ||
231 | let fit = |μ̃ : &RNDM<F, N>| { | |
232 | (opA.apply(Pair(μ̃, &z))-b).norm2_squared_div2() | |
233 | //+ fnR.apply(z) + reg.apply(μ) | |
234 | + fnH.apply(/* opKμ.apply(&μ̃) + */ opKz.apply(&z)) | |
235 | }; | |
236 | ||
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
237 | μ.merge_spikes_fitness(config.insertion.final_merging_method(), fit, |&v| v); |
35 | 238 | μ.prune(); |
239 | Pair(μ, z) | |
240 | } |