Thu, 23 Jan 2025 23:34:05 +0100
Merging adjustments, parameter tuning, etc.
/*! Solver for the point source localisation problem using a primal-dual proximal splitting with a forward step. */ use numeric_literals::replace_float_literals; use serde::{Serialize, Deserialize}; use alg_tools::iterate::AlgIteratorFactory; use alg_tools::euclidean::Euclidean; use alg_tools::mapping::{Mapping, DifferentiableRealMapping, Instance}; use alg_tools::norms::Norm; use alg_tools::direct_product::Pair; use alg_tools::nalgebra_support::ToNalgebraRealField; use alg_tools::linops::{ BoundedLinear, AXPY, GEMV, Adjointable, IdOp, }; use alg_tools::convex::{Conjugable, Prox}; use alg_tools::norms::{L2, PairNorm}; use crate::types::*; use crate::measures::{DiscreteMeasure, Radon, RNDM}; use crate::measures::merging::SpikeMerging; use crate::forward_model::{ ForwardModel, AdjointProductPairBoundedBy, }; use crate::plot::{ SeqPlotter, Plotting, PlotLookup }; use crate::fb::*; use crate::regularisation::RegTerm; use crate::dataterm::calculate_residual; /// Settings for [`pointsource_forward_pdps_pair`]. #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] #[serde(default)] pub struct ForwardPDPSConfig<F : Float> { /// Primal step length scaling. pub τ0 : F, /// Primal step length scaling. pub σp0 : F, /// Dual step length scaling. pub σd0 : F, /// Generic parameters pub insertion : FBGenericConfig<F>, } #[replace_float_literals(F::cast_from(literal))] impl<F : Float> Default for ForwardPDPSConfig<F> { fn default() -> Self { ForwardPDPSConfig { τ0 : 0.99, σd0 : 0.05, σp0 : 0.99, insertion : Default::default() } } } type MeasureZ<F, Z, const N : usize> = Pair<RNDM<F, N>, Z>; /// Iteratively solve the pointsource localisation with an additional variable /// using primal-dual proximal splitting with a forward step. #[replace_float_literals(F::cast_from(literal))] pub fn pointsource_forward_pdps_pair< F, I, A, S, Reg, P, Z, R, Y, /*KOpM, */ KOpZ, H, const N : usize >( opA : &A, b : &A::Observable, reg : Reg, prox_penalty : &P, config : &ForwardPDPSConfig<F>, iterator : I, mut plotter : SeqPlotter<F, N>, //opKμ : KOpM, opKz : &KOpZ, fnR : &R, fnH : &H, mut z : Z, mut y : Y, ) -> MeasureZ<F, Z, N> where F : Float + ToNalgebraRealField, I : AlgIteratorFactory<IterInfo<F, N>>, A : ForwardModel< MeasureZ<F, Z, N>, F, PairNorm<Radon, L2, L2>, PreadjointCodomain = Pair<S, Z>, > + AdjointProductPairBoundedBy<MeasureZ<F, Z, N>, P, IdOp<Z>, FloatType=F>, S: DifferentiableRealMapping<F, N>, for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable> + Instance<A::Observable>, PlotLookup : Plotting<N>, RNDM<F, N> : SpikeMerging<F>, Reg : RegTerm<F, N>, P : ProxPenalty<F, S, Reg, N>, KOpZ : BoundedLinear<Z, L2, L2, F, Codomain=Y> + GEMV<F, Z> + Adjointable<Z, Y, AdjointCodomain = Z>, for<'b> KOpZ::Adjoint<'b> : GEMV<F, Y>, Y : AXPY<F> + Euclidean<F, Output=Y> + Clone + ClosedAdd, for<'b> &'b Y : Instance<Y>, Z : AXPY<F, Owned=Z> + Euclidean<F, Output=Z> + Clone + Norm<F, L2>, for<'b> &'b Z : Instance<Z>, R : Prox<Z, Codomain=F>, H : Conjugable<Y, F, Codomain=F>, for<'b> H::Conjugate<'b> : Prox<Y>, { // Check parameters assert!(config.τ0 > 0.0 && config.τ0 < 1.0 && config.σp0 > 0.0 && config.σp0 < 1.0 && config.σd0 > 0.0 && config.σp0 * config.σd0 <= 1.0, "Invalid step length parameters"); // Initialise iterates let mut μ = DiscreteMeasure::new(); let mut residual = calculate_residual(Pair(&μ, &z), opA, b); // Set up parameters let bigM = 0.0; //opKμ.adjoint_product_bound(prox_penalty).unwrap().sqrt(); let nKz = opKz.opnorm_bound(L2, L2); let opIdZ = IdOp::new(); let (l, l_z) = opA.adjoint_product_pair_bound(prox_penalty, &opIdZ).unwrap(); // We need to satisfy // // τσ_dM(1-σ_p L_z)/(1 - τ L) + [σ_p L_z + σ_pσ_d‖K_z‖^2] < 1 // ^^^^^^^^^^^^^^^^^^^^^^^^^ // with 1 > σ_p L_z and 1 > τ L. // // To do so, we first solve σ_p and σ_d from standard PDPS step length condition // ^^^^^ < 1. then we solve τ from the rest. let σ_d = config.σd0 / nKz; let σ_p = config.σp0 / (l_z + config.σd0 * nKz); // Observe that = 1 - ^^^^^^^^^^^^^^^^^^^^^ = 1 - σ_{p,0} // We get the condition τσ_d M (1-σ_p L_z) < (1-σ_{p,0})*(1-τ L) // ⟺ τ [ σ_d M (1-σ_p L_z) + (1-σ_{p,0}) L ] < (1-σ_{p,0}) let φ = 1.0 - config.σp0; let a = 1.0 - σ_p * l_z; let τ = config.τ0 * φ / ( σ_d * bigM * a + φ * l ); // Acceleration is not currently supported // let γ = dataterm.factor_of_strong_convexity(); let ω = 1.0; // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled // by τ compared to the conditional gradient approach. let tolerance = config.insertion.tolerance * τ * reg.tolerance_scaling(); let mut ε = tolerance.initial(); let starH = fnH.conjugate(); // Statistics let full_stats = |residual : &A::Observable, μ : &RNDM<F, N>, z : &Z, ε, stats| IterInfo { value : residual.norm2_squared_div2() + fnR.apply(z) + reg.apply(μ) + fnH.apply(/* opKμ.apply(μ) + */ opKz.apply(z)), n_spikes : μ.len(), ε, // postprocessing: config.insertion.postprocessing.then(|| μ.clone()), .. stats }; let mut stats = IterInfo::new(); // Run the algorithm for state in iterator.iter_init(|| full_stats(&residual, &μ, &z, ε, stats.clone())) { // Calculate initial transport let Pair(mut τv, τz) = opA.preadjoint().apply(residual * τ); let μ_base = μ.clone(); // Construct μ^{k+1} by solving finite-dimensional subproblems and insert new spikes. let (maybe_d, _within_tolerances) = prox_penalty.insert_and_reweigh( &mut μ, &mut τv, &μ_base, None, τ, ε, &config.insertion, ®, &state, &mut stats, ); // Merge spikes. // This crucially expects the merge routine to be stable with respect to spike locations, // and not to performing any pruning. That is be to done below simultaneously for γ. // Merge spikes. // This crucially expects the merge routine to be stable with respect to spike locations, // and not to performing any pruning. That is be to done below simultaneously for γ. let ins = &config.insertion; if ins.merge_now(&state) { stats.merged += prox_penalty.merge_spikes_no_fitness( &mut μ, &mut τv, &μ_base, None, τ, ε, ins, ®, //Some(|μ̃ : &RNDM<F, N>| calculate_residual(Pair(μ̃, &z), opA, b).norm2_squared_div2()), ); } // Prune spikes with zero weight. stats.pruned += prune_with_stats(&mut μ); // Do z variable primal update let mut z_new = τz; opKz.adjoint().gemv(&mut z_new, -σ_p, &y, -σ_p/τ); z_new = fnR.prox(σ_p, z_new + &z); // Do dual update // opKμ.gemv(&mut y, σ_d*(1.0 + ω), &μ, 1.0); // y = y + σ_d K[(1+ω)(μ,z)^{k+1}] opKz.gemv(&mut y, σ_d*(1.0 + ω), &z_new, 1.0); // opKμ.gemv(&mut y, -σ_d*ω, μ_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b opKz.gemv(&mut y, -σ_d*ω, z, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b y = starH.prox(σ_d, y); z = z_new; // Update residual residual = calculate_residual(Pair(&μ, &z), opA, b); // Update step length parameters // let ω = pdpsconfig.acceleration.accelerate(&mut τ, &mut σ, γ); // Give statistics if requested let iter = state.iteration(); stats.this_iters += 1; state.if_verbose(|| { plotter.plot_spikes(iter, maybe_d.as_ref(), Some(&τv), &μ); full_stats(&residual, &μ, &z, ε, std::mem::replace(&mut stats, IterInfo::new())) }); // Update main tolerance for next iteration ε = tolerance.update(ε, iter); } let fit = |μ̃ : &RNDM<F, N>| { (opA.apply(Pair(μ̃, &z))-b).norm2_squared_div2() //+ fnR.apply(z) + reg.apply(μ) + fnH.apply(/* opKμ.apply(&μ̃) + */ opKz.apply(&z)) }; μ.merge_spikes_fitness(config.insertion.final_merging_method(), fit, |&v| v); μ.prune(); Pair(μ, z) }