Thu, 23 Jan 2025 23:35:28 +0100
Generic proximal penalty support
35 | 1 | /*! |
2 | Solver for the point source localisation problem using a | |
3 | primal-dual proximal splitting with a forward step. | |
4 | */ | |
5 | ||
6 | use numeric_literals::replace_float_literals; | |
7 | use serde::{Serialize, Deserialize}; | |
8 | ||
9 | use alg_tools::iterate::AlgIteratorFactory; | |
10 | use alg_tools::euclidean::Euclidean; | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
11 | use alg_tools::mapping::{Mapping, DifferentiableRealMapping, Instance}; |
35 | 12 | use alg_tools::norms::Norm; |
13 | use alg_tools::direct_product::Pair; | |
14 | use alg_tools::nalgebra_support::ToNalgebraRealField; | |
15 | use alg_tools::linops::{ | |
16 | BoundedLinear, AXPY, GEMV, Adjointable, IdOp, | |
17 | }; | |
18 | use alg_tools::convex::{Conjugable, Prox}; | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
19 | use alg_tools::norms::{L2, PairNorm}; |
35 | 20 | |
21 | use crate::types::*; | |
22 | use crate::measures::{DiscreteMeasure, Radon, RNDM}; | |
23 | use crate::measures::merging::SpikeMerging; | |
24 | use crate::forward_model::{ | |
25 | ForwardModel, | |
26 | AdjointProductPairBoundedBy, | |
27 | }; | |
28 | use crate::plot::{ | |
29 | SeqPlotter, | |
30 | Plotting, | |
31 | PlotLookup | |
32 | }; | |
33 | use crate::fb::*; | |
34 | use crate::regularisation::RegTerm; | |
35 | use crate::dataterm::calculate_residual; | |
36 | ||
37 | /// Settings for [`pointsource_forward_pdps_pair`]. | |
38 | #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] | |
39 | #[serde(default)] | |
40 | pub struct ForwardPDPSConfig<F : Float> { | |
41 | /// Primal step length scaling. | |
42 | pub τ0 : F, | |
43 | /// Primal step length scaling. | |
44 | pub σp0 : F, | |
45 | /// Dual step length scaling. | |
46 | pub σd0 : F, | |
47 | /// Generic parameters | |
48 | pub insertion : FBGenericConfig<F>, | |
49 | } | |
50 | ||
51 | #[replace_float_literals(F::cast_from(literal))] | |
52 | impl<F : Float> Default for ForwardPDPSConfig<F> { | |
53 | fn default() -> Self { | |
54 | let τ0 = 0.99; | |
55 | ForwardPDPSConfig { | |
56 | τ0, | |
57 | σd0 : 0.1, | |
58 | σp0 : 0.99, | |
59 | insertion : Default::default() | |
60 | } | |
61 | } | |
62 | } | |
63 | ||
64 | type MeasureZ<F, Z, const N : usize> = Pair<RNDM<F, N>, Z>; | |
65 | ||
66 | /// Iteratively solve the pointsource localisation with an additional variable | |
67 | /// using primal-dual proximal splitting with a forward step. | |
68 | #[replace_float_literals(F::cast_from(literal))] | |
69 | pub fn pointsource_forward_pdps_pair< | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
70 | F, I, A, S, Reg, P, Z, R, Y, /*KOpM, */ KOpZ, H, const N : usize |
35 | 71 | >( |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
72 | opA : &A, |
35 | 73 | b : &A::Observable, |
74 | reg : Reg, | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
75 | prox_penalty : &P, |
35 | 76 | config : &ForwardPDPSConfig<F>, |
77 | iterator : I, | |
78 | mut plotter : SeqPlotter<F, N>, | |
79 | //opKμ : KOpM, | |
80 | opKz : &KOpZ, | |
81 | fnR : &R, | |
82 | fnH : &H, | |
83 | mut z : Z, | |
84 | mut y : Y, | |
85 | ) -> MeasureZ<F, Z, N> | |
86 | where | |
87 | F : Float + ToNalgebraRealField, | |
88 | I : AlgIteratorFactory<IterInfo<F, N>>, | |
89 | A : ForwardModel< | |
90 | MeasureZ<F, Z, N>, | |
91 | F, | |
92 | PairNorm<Radon, L2, L2>, | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
93 | PreadjointCodomain = Pair<S, Z>, |
35 | 94 | > |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
95 | + AdjointProductPairBoundedBy<MeasureZ<F, Z, N>, P, IdOp<Z>, FloatType=F>, |
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
96 | S: DifferentiableRealMapping<F, N>, |
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
97 | for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable> + Instance<A::Observable>, |
35 | 98 | PlotLookup : Plotting<N>, |
99 | RNDM<F, N> : SpikeMerging<F>, | |
100 | Reg : RegTerm<F, N>, | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
101 | P : ProxPenalty<F, S, Reg, N>, |
35 | 102 | KOpZ : BoundedLinear<Z, L2, L2, F, Codomain=Y> |
103 | + GEMV<F, Z> | |
104 | + Adjointable<Z, Y, AdjointCodomain = Z>, | |
105 | for<'b> KOpZ::Adjoint<'b> : GEMV<F, Y>, | |
106 | Y : AXPY<F> + Euclidean<F, Output=Y> + Clone + ClosedAdd, | |
107 | for<'b> &'b Y : Instance<Y>, | |
108 | Z : AXPY<F, Owned=Z> + Euclidean<F, Output=Z> + Clone + Norm<F, L2>, | |
109 | for<'b> &'b Z : Instance<Z>, | |
110 | R : Prox<Z, Codomain=F>, | |
111 | H : Conjugable<Y, F, Codomain=F>, | |
112 | for<'b> H::Conjugate<'b> : Prox<Y>, | |
113 | { | |
114 | ||
115 | // Check parameters | |
116 | assert!(config.τ0 > 0.0 && | |
117 | config.τ0 < 1.0 && | |
118 | config.σp0 > 0.0 && | |
119 | config.σp0 < 1.0 && | |
120 | config.σd0 > 0.0 && | |
121 | config.σp0 * config.σd0 <= 1.0, | |
122 | "Invalid step length parameters"); | |
123 | ||
124 | // Initialise iterates | |
125 | let mut μ = DiscreteMeasure::new(); | |
126 | let mut residual = calculate_residual(Pair(&μ, &z), opA, b); | |
127 | ||
128 | // Set up parameters | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
129 | let bigM = 0.0; //opKμ.adjoint_product_bound(prox_penalty).unwrap().sqrt(); |
35 | 130 | let nKz = opKz.opnorm_bound(L2, L2); |
131 | let opIdZ = IdOp::new(); | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
132 | let (l, l_z) = opA.adjoint_product_pair_bound(prox_penalty, &opIdZ).unwrap(); |
35 | 133 | // We need to satisfy |
134 | // | |
135 | // τσ_dM(1-σ_p L_z)/(1 - τ L) + [σ_p L_z + σ_pσ_d‖K_z‖^2] < 1 | |
136 | // ^^^^^^^^^^^^^^^^^^^^^^^^^ | |
137 | // with 1 > σ_p L_z and 1 > τ L. | |
138 | // | |
139 | // To do so, we first solve σ_p and σ_d from standard PDPS step length condition | |
140 | // ^^^^^ < 1. then we solve τ from the rest. | |
141 | let σ_d = config.σd0 / nKz; | |
142 | let σ_p = config.σp0 / (l_z + config.σd0 * nKz); | |
143 | // Observe that = 1 - ^^^^^^^^^^^^^^^^^^^^^ = 1 - σ_{p,0} | |
144 | // We get the condition τσ_d M (1-σ_p L_z) < (1-σ_{p,0})*(1-τ L) | |
145 | // ⟺ τ [ σ_d M (1-σ_p L_z) + (1-σ_{p,0}) L ] < (1-σ_{p,0}) | |
146 | let φ = 1.0 - config.σp0; | |
147 | let a = 1.0 - σ_p * l_z; | |
148 | let τ = config.τ0 * φ / ( σ_d * bigM * a + φ * l ); | |
149 | // Acceleration is not currently supported | |
150 | // let γ = dataterm.factor_of_strong_convexity(); | |
151 | let ω = 1.0; | |
152 | ||
153 | // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled | |
154 | // by τ compared to the conditional gradient approach. | |
155 | let tolerance = config.insertion.tolerance * τ * reg.tolerance_scaling(); | |
156 | let mut ε = tolerance.initial(); | |
157 | ||
158 | let starH = fnH.conjugate(); | |
159 | ||
160 | // Statistics | |
161 | let full_stats = |residual : &A::Observable, μ : &RNDM<F, N>, z : &Z, ε, stats| IterInfo { | |
162 | value : residual.norm2_squared_div2() + fnR.apply(z) | |
163 | + reg.apply(μ) + fnH.apply(/* opKμ.apply(μ) + */ opKz.apply(z)), | |
164 | n_spikes : μ.len(), | |
165 | ε, | |
166 | // postprocessing: config.insertion.postprocessing.then(|| μ.clone()), | |
167 | .. stats | |
168 | }; | |
169 | let mut stats = IterInfo::new(); | |
170 | ||
171 | // Run the algorithm | |
172 | for state in iterator.iter_init(|| full_stats(&residual, &μ, &z, ε, stats.clone())) { | |
173 | // Calculate initial transport | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
174 | let Pair(mut τv, τz) = opA.preadjoint().apply(residual * τ); |
35 | 175 | let z_base = z.clone(); |
176 | let μ_base = μ.clone(); | |
177 | ||
178 | // Construct μ^{k+1} by solving finite-dimensional subproblems and insert new spikes. | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
179 | let (maybe_d, _within_tolerances) = prox_penalty.insert_and_reweigh( |
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
180 | &mut μ, &mut τv, &μ_base, None, |
35 | 181 | τ, ε, &config.insertion, |
182 | ®, &state, &mut stats, | |
183 | ); | |
184 | ||
185 | // // Merge spikes. | |
186 | // // This expects the prune below to prune γ. | |
187 | // // TODO: This may not work correctly in all cases. | |
188 | // let ins = &config.insertion; | |
189 | // if ins.merge_now(&state) { | |
190 | // if let SpikeMergingMethod::None = ins.merging { | |
191 | // } else { | |
192 | // stats.merged += μ.merge_spikes(ins.merging, |μ_candidate| { | |
193 | // let ν = μ_candidate.sub_matching(&γ1)-&μ_base_minus_γ0; | |
194 | // let mut d = &τv̆ + op𝒟.preapply(ν); | |
195 | // reg.verify_merge_candidate(&mut d, μ_candidate, τ, ε, ins) | |
196 | // }); | |
197 | // } | |
198 | // } | |
199 | ||
200 | // Prune spikes with zero weight. | |
201 | stats.pruned += prune_with_stats(&mut μ); | |
202 | ||
203 | // Do z variable primal update | |
204 | z.axpy(-σ_p/τ, τz, 1.0); // TODO: simplify nasty factors | |
205 | opKz.adjoint().gemv(&mut z, -σ_p, &y, 1.0); | |
206 | z = fnR.prox(σ_p, z); | |
207 | // Do dual update | |
208 | // opKμ.gemv(&mut y, σ_d*(1.0 + ω), &μ, 1.0); // y = y + σ_d K[(1+ω)(μ,z)^{k+1}] | |
209 | opKz.gemv(&mut y, σ_d*(1.0 + ω), &z, 1.0); | |
210 | // opKμ.gemv(&mut y, -σ_d*ω, μ_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b | |
211 | opKz.gemv(&mut y, -σ_d*ω, z_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b | |
212 | y = starH.prox(σ_d, y); | |
213 | ||
214 | // Update residual | |
215 | residual = calculate_residual(Pair(&μ, &z), opA, b); | |
216 | ||
217 | // Update step length parameters | |
218 | // let ω = pdpsconfig.acceleration.accelerate(&mut τ, &mut σ, γ); | |
219 | ||
220 | // Give statistics if requested | |
221 | let iter = state.iteration(); | |
222 | stats.this_iters += 1; | |
223 | ||
224 | state.if_verbose(|| { | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
225 | plotter.plot_spikes(iter, maybe_d.as_ref(), Some(&τv), &μ); |
35 | 226 | full_stats(&residual, &μ, &z, ε, std::mem::replace(&mut stats, IterInfo::new())) |
227 | }); | |
228 | ||
229 | // Update main tolerance for next iteration | |
230 | ε = tolerance.update(ε, iter); | |
231 | } | |
232 | ||
233 | let fit = |μ̃ : &RNDM<F, N>| { | |
234 | (opA.apply(Pair(μ̃, &z))-b).norm2_squared_div2() | |
235 | //+ fnR.apply(z) + reg.apply(μ) | |
236 | + fnH.apply(/* opKμ.apply(&μ̃) + */ opKz.apply(&z)) | |
237 | }; | |
238 | ||
239 | μ.merge_spikes_fitness(config.insertion.merging, fit, |&v| v); | |
240 | μ.prune(); | |
241 | Pair(μ, z) | |
242 | } |