321 self.differential(&y) |
321 self.differential(&y) |
322 } |
322 } |
323 } |
323 } |
324 |
324 |
325 #[replace_float_literals(F::cast_from(literal))] |
325 #[replace_float_literals(F::cast_from(literal))] |
|
326 impl<'a, F : Float, R, C, S, const N : usize> Lipschitz<L1> |
|
327 for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> |
|
328 where R : Constant<Type=F>, |
|
329 C : Constant<Type=F>, |
|
330 S : Constant<Type=F> { |
|
331 type FloatType = F; |
|
332 |
|
333 fn lipschitz_factor(&self, L1 : L1) -> Option<F> { |
|
334 // To get the product Lipschitz factor, we note that for any ψ_i, we have |
|
335 // ∏_{i=1}^N φ_i(x_i) - ∏_{i=1}^N φ_i(y_i) |
|
336 // = [φ_1(x_1)-φ_1(y_1)] ∏_{i=2}^N φ_i(x_i) |
|
337 // + φ_1(y_1)[ ∏_{i=2}^N φ_i(x_i) - ∏_{i=2}^N φ_i(y_i)] |
|
338 // = ∑_{j=1}^N [φ_j(x_j)-φ_j(y_j)]∏_{i > j} φ_i(x_i) ∏_{i < j} φ_i(y_i) |
|
339 // Thus |
|
340 // |∏_{i=1}^N φ_i(x_i) - ∏_{i=1}^N φ_i(y_i)| |
|
341 // ≤ ∑_{j=1}^N |φ_j(x_j)-φ_j(y_j)| ∏_{j ≠ i} \max_i |φ_i| |
|
342 // |
|
343 // Thus we need 1D Lipschitz factors, and the maximum for φ = θ * ψ. |
|
344 // |
|
345 // We have |
|
346 // θ * ψ(x) = 0 if c_1(x) ≥ c_2(x) |
|
347 // = (1/2)[erf(c_2(x)/(√2σ)) - erf(c_1(x)/(√2σ))] if c_1(x) < c_2(x), |
|
348 // where c_1(x) = max{-x-b,-a} = -min{b+x,a} and c_2(x)=min{b-x,a}, C is the Gaussian |
|
349 // normalisation factor, and erf(s) = (2/√π) ∫_0^s e^{-t^2} dt. |
|
350 // Thus, if c_1(x) < c_2(x) and c_1(y) < c_2(y), we have |
|
351 // θ * ψ(x) - θ * ψ(y) = (1/√π)[∫_{c_1(x)/(√2σ)}^{c_1(y)/(√2σ) e^{-t^2} dt |
|
352 // - ∫_{c_2(x)/(√2σ)}^{c_2(y)/(√2σ)] e^{-t^2} dt] |
|
353 // Thus |
|
354 // |θ * ψ(x) - θ * ψ(y)| ≤ (1/√π)/(√2σ)(|c_1(x)-c_1(y)|+|c_2(x)-c_2(y)|) |
|
355 // ≤ 2(1/√π)/(√2σ)|x-y| |
|
356 // ≤ √2/(√πσ)|x-y|. |
|
357 // |
|
358 // For the product we also need the value θ * ψ(0), which is |
|
359 // (1/2)[erf(min{a,b}/(√2σ))-erf(max{-b,-a}/(√2σ)] |
|
360 // = (1/2)[erf(min{a,b}/(√2σ))-erf(-min{a,b}/(√2σ))] |
|
361 // = erf(min{a,b}/(√2σ)) |
|
362 // |
|
363 // If c_1(x) ≥ c_2(x), then x ∉ [-(a+b), a+b]. If also y is outside that range, |
|
364 // θ * ψ(x) = θ * ψ(y). If only y is in the range [-(a+b), a+b], we can replace |
|
365 // x by -(a+b) or (a+b), either of which is closer to y and still θ * ψ(x)=0. |
|
366 // Thus same calculations as above work for the Lipschitz factor. |
|
367 let Convolution(ref ind, |
|
368 SupportProductFirst(ref cut, |
|
369 ref gaussian)) = self; |
|
370 let a = cut.r.value(); |
|
371 let b = ind.r.value(); |
|
372 let σ = gaussian.variance.value().sqrt(); |
|
373 let π = F::PI; |
|
374 let t = F::SQRT_2 * σ; |
|
375 let l1d = F::SQRT_2 / (π.sqrt() * σ); |
|
376 let e0 = F::cast_from(erf((a.min(b) / t).as_())); |
|
377 Some(l1d * e0.powi(N as i32-1)) |
|
378 } |
|
379 } |
|
380 |
326 impl<'a, F : Float, R, C, S, const N : usize> Lipschitz<L2> |
381 impl<'a, F : Float, R, C, S, const N : usize> Lipschitz<L2> |
327 for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> |
382 for Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> |
328 where R : Constant<Type=F>, |
383 where R : Constant<Type=F>, |
329 C : Constant<Type=F>, |
384 C : Constant<Type=F>, |
330 S : Constant<Type=F> { |
385 S : Constant<Type=F> { |
331 type FloatType = F; |
386 type FloatType = F; |
332 |
387 #[inline] |
333 fn lipschitz_factor(&self, L2 : L2) -> Option<F> { |
388 fn lipschitz_factor(&self, L2 : L2) -> Option<Self::FloatType> { |
334 todo!("This requirement some error function work.") |
389 self.lipschitz_factor(L1).map(|l1| l1 * <S::Type>::cast_from(N).sqrt()) |
335 } |
390 } |
336 } |
391 } |
337 |
392 |
338 impl<F : Float, R, C, S, const N : usize> |
393 impl<F : Float, R, C, S, const N : usize> |
339 Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> |
394 Convolution<CubeIndicator<R, N>, BasicCutGaussian<C, S, N>> |