Mon, 06 Jan 2025 21:37:03 -0500
Attempt to do more Serialize / Deserialize but run into csv problems
0 | 1 | //! Implementation of the hat function |
2 | ||
3 | use numeric_literals::replace_float_literals; | |
38
0f59c0d02e13
Attempt to do more Serialize / Deserialize but run into csv problems
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
4 | use serde::{Serialize, Deserialize}; |
0 | 5 | use alg_tools::types::*; |
6 | use alg_tools::norms::*; | |
7 | use alg_tools::loc::Loc; | |
8 | use alg_tools::sets::Cube; | |
9 | use alg_tools::bisection_tree::{ | |
10 | Support, | |
11 | Constant, | |
12 | Bounds, | |
13 | LocalAnalysis, | |
14 | GlobalAnalysis, | |
15 | Bounded, | |
16 | }; | |
35 | 17 | use alg_tools::mapping::{Mapping, Instance}; |
18 | use alg_tools::maputil::array_init; | |
19 | use crate::types::Lipschitz; | |
0 | 20 | |
21 | /// Representation of the hat function $f(x)=1-\\|x\\|\_1/ε$ of `width` $ε$ on $ℝ^N$. | |
38
0f59c0d02e13
Attempt to do more Serialize / Deserialize but run into csv problems
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
22 | #[derive(Copy,Clone,Serialize,Deserialize,Debug,Eq,PartialEq)] |
0 | 23 | pub struct Hat<C : Constant, const N : usize> { |
24 | /// The parameter $ε>0$. | |
25 | pub width : C, | |
26 | } | |
27 | ||
28 | #[replace_float_literals(C::Type::cast_from(literal))] | |
35 | 29 | impl<'a, C : Constant, const N : usize> Mapping<Loc<C::Type, N>> for Hat<C, N> { |
30 | type Codomain = C::Type; | |
31 | ||
0 | 32 | #[inline] |
35 | 33 | fn apply<I : Instance<Loc<C::Type, N>>>(&self, x : I) -> Self::Codomain { |
0 | 34 | let ε = self.width.value(); |
35 | 35 | 0.0.max(1.0-x.cow().norm(L1)/ε) |
0 | 36 | } |
37 | } | |
38 | ||
39 | #[replace_float_literals(C::Type::cast_from(literal))] | |
40 | impl<'a, C : Constant, const N : usize> Support<C::Type, N> for Hat<C, N> { | |
41 | #[inline] | |
42 | fn support_hint(&self) -> Cube<C::Type,N> { | |
43 | let ε = self.width.value(); | |
44 | array_init(|| [-ε, ε]).into() | |
45 | } | |
46 | ||
47 | #[inline] | |
48 | fn in_support(&self, x : &Loc<C::Type,N>) -> bool { | |
49 | x.norm(L1) < self.width.value() | |
50 | } | |
51 | ||
52 | /*fn fully_in_support(&self, _cube : &Cube<C::Type,N>) -> bool { | |
53 | todo!("Not implemented, but not used at the moment") | |
54 | }*/ | |
55 | ||
56 | #[inline] | |
57 | fn bisection_hint(&self, cube : &Cube<C::Type,N>) -> [Option<C::Type>; N] { | |
58 | let ε = self.width.value(); | |
59 | cube.map(|a, b| { | |
60 | if a < 1.0 { | |
61 | if 1.0 < b { | |
62 | Some(1.0) | |
63 | } else { | |
64 | if a < -ε { | |
65 | if b > -ε { Some(-ε) } else { None } | |
66 | } else { | |
67 | None | |
68 | } | |
69 | } | |
70 | } else { | |
71 | if b > ε { Some(ε) } else { None } | |
72 | } | |
73 | }); | |
74 | todo!("also diagonals") | |
75 | } | |
76 | } | |
77 | ||
78 | ||
79 | #[replace_float_literals(C::Type::cast_from(literal))] | |
80 | impl<'a, C : Constant, const N : usize> | |
81 | GlobalAnalysis<C::Type, Bounds<C::Type>> | |
82 | for Hat<C, N> { | |
83 | #[inline] | |
84 | fn global_analysis(&self) -> Bounds<C::Type> { | |
85 | Bounds(0.0, 1.0) | |
86 | } | |
87 | } | |
88 | ||
35 | 89 | #[replace_float_literals(C::Type::cast_from(literal))] |
90 | impl<'a, C : Constant, const N : usize> Lipschitz<L1> for Hat<C, N> { | |
91 | type FloatType = C::Type; | |
92 | ||
93 | fn lipschitz_factor(&self, _l1 : L1) -> Option<C::Type> { | |
94 | Some(1.0/self.width.value()) | |
95 | } | |
96 | } | |
97 | ||
98 | #[replace_float_literals(C::Type::cast_from(literal))] | |
99 | impl<'a, C : Constant, const N : usize> Lipschitz<L2> for Hat<C, N> { | |
100 | type FloatType = C::Type; | |
101 | ||
102 | fn lipschitz_factor(&self, _l2 : L2) -> Option<C::Type> { | |
103 | self.lipschitz_factor(L1).map(|l1| | |
104 | <L2 as Dominated<C::Type, L1, Loc<C::Type,N>>>::from_norm(&L2, l1, L1) | |
105 | ) | |
106 | } | |
107 | } | |
108 | ||
0 | 109 | impl<'a, C : Constant, const N : usize> |
110 | LocalAnalysis<C::Type, Bounds<C::Type>, N> | |
111 | for Hat<C, N> { | |
112 | #[inline] | |
113 | fn local_analysis(&self, cube : &Cube<C::Type, N>) -> Bounds<C::Type> { | |
114 | // The function is maximised/minimised where the 1-norm is minimised/maximised. | |
115 | let lower = self.apply(cube.maxnorm_point()); | |
116 | let upper = self.apply(cube.minnorm_point()); | |
117 | Bounds(lower, upper) | |
118 | } | |
119 | } | |
120 | ||
121 | #[replace_float_literals(C::Type::cast_from(literal))] | |
122 | impl<'a, C : Constant, const N : usize> | |
123 | Norm<C::Type, Linfinity> | |
124 | for Hat<C, N> { | |
125 | #[inline] | |
126 | fn norm(&self, _ : Linfinity) -> C::Type { | |
127 | self.bounds().upper() | |
128 | } | |
129 | } | |
130 |