src/kernels/hat.rs

changeset 0
eb3c7813b67a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/kernels/hat.rs	Thu Dec 01 23:07:35 2022 +0200
@@ -0,0 +1,118 @@
+//! Implementation of the hat function
+
+use numeric_literals::replace_float_literals;
+use serde::Serialize;
+use alg_tools::types::*;
+use alg_tools::norms::*;
+use alg_tools::loc::Loc;
+use alg_tools::sets::Cube;
+use alg_tools::bisection_tree::{
+    Support,
+    Constant,
+    Bounds,
+    LocalAnalysis,
+    GlobalAnalysis,
+    Bounded,
+};
+use alg_tools::mapping::Apply;
+use alg_tools::maputil::{array_init};
+
+/// Representation of the hat function $f(x)=1-\\|x\\|\_1/ε$ of `width` $ε$ on $ℝ^N$.
+#[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)]
+pub struct Hat<C : Constant, const N : usize> {
+    /// The parameter $ε>0$.
+    pub width : C,
+}
+
+#[replace_float_literals(C::Type::cast_from(literal))]
+impl<'a, C : Constant, const N : usize> Apply<&'a Loc<C::Type, N>> for Hat<C, N> {
+    type Output = C::Type;
+    #[inline]
+    fn apply(&self, x : &'a Loc<C::Type, N>) -> Self::Output {
+        let ε = self.width.value();
+        0.0.max(1.0-x.norm(L1)/ε)
+    }
+}
+
+#[replace_float_literals(C::Type::cast_from(literal))]
+impl<C : Constant, const N : usize> Apply<Loc<C::Type, N>> for Hat<C, N> {
+    type Output = C::Type;
+    #[inline]
+    fn apply(&self, x : Loc<C::Type, N>) -> Self::Output {
+        self.apply(&x)
+    }
+}
+
+
+#[replace_float_literals(C::Type::cast_from(literal))]
+impl<'a, C : Constant, const N : usize> Support<C::Type, N> for Hat<C, N> {
+    #[inline]
+    fn support_hint(&self) -> Cube<C::Type,N> {
+        let ε = self.width.value();
+        array_init(|| [-ε, ε]).into()
+    }
+
+    #[inline]
+    fn in_support(&self, x : &Loc<C::Type,N>) -> bool {
+        x.norm(L1) < self.width.value()
+    }
+    
+    /*fn fully_in_support(&self, _cube : &Cube<C::Type,N>) -> bool {
+        todo!("Not implemented, but not used at the moment")
+    }*/
+
+    #[inline]
+    fn bisection_hint(&self, cube : &Cube<C::Type,N>) -> [Option<C::Type>; N] {
+        let ε = self.width.value();
+        cube.map(|a, b| {
+            if a < 1.0 {
+                if 1.0 < b {
+                    Some(1.0)
+                } else {
+                    if a < -ε {
+                        if b > -ε { Some(-ε) } else { None }
+                    } else {
+                        None
+                    }
+                }
+            } else {
+                if b > ε { Some(ε) } else { None }
+            }
+        });
+        todo!("also diagonals")
+    }
+}
+
+
+#[replace_float_literals(C::Type::cast_from(literal))]
+impl<'a, C : Constant, const N : usize>
+GlobalAnalysis<C::Type, Bounds<C::Type>>
+for Hat<C, N> {
+    #[inline]
+    fn global_analysis(&self) -> Bounds<C::Type> {
+        Bounds(0.0, 1.0)
+    }
+}
+
+impl<'a, C : Constant, const N : usize>
+LocalAnalysis<C::Type, Bounds<C::Type>, N>
+for Hat<C, N> {
+    #[inline]
+    fn local_analysis(&self, cube : &Cube<C::Type, N>) -> Bounds<C::Type> {
+        // The function is maximised/minimised where the 1-norm is minimised/maximised.
+        let lower = self.apply(cube.maxnorm_point());
+        let upper = self.apply(cube.minnorm_point());
+        Bounds(lower, upper)
+    }
+}
+
+#[replace_float_literals(C::Type::cast_from(literal))]
+impl<'a, C : Constant, const N : usize>
+Norm<C::Type, Linfinity>
+for Hat<C, N> {
+    #[inline]
+    fn norm(&self, _ : Linfinity) -> C::Type {
+        self.bounds().upper()
+    }
+}
+

mercurial