Wed, 04 Dec 2024 23:19:46 -0500
Basic cylinder implementation
| 37 | 1 | /*! |
| 2 | Implementation of the surface of a 3D cylinder as a [`ManifoldPoint`]. | |
| 3 | */ | |
| 4 | ||
| 5 | use alg_tools::euclidean::Euclidean; | |
| 6 | use serde_repr::*; | |
| 7 | use serde::{Serialize, Deserialize}; | |
| 8 | use alg_tools::loc::Loc; | |
| 9 | use alg_tools::norms::{Norm, L2}; | |
| 10 | use alg_tools::types::Float; | |
| 11 | use crate::manifold::{ManifoldPoint, EmbeddedManifoldPoint, FacedManifoldPoint}; | |
| 12 | use crate::newton::{newton_sym1x1, newton_sym2x2}; | |
| 13 | ||
| 14 | /// Angle | |
| 15 | pub type Angle = f64; | |
| 16 | ||
| 17 | /// Cylindrical coordinates in ℝ^3 | |
| 18 | #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] | |
| 19 | pub struct CylCoords { | |
| 20 | pub r : f64, | |
| 21 | pub angle : Angle, | |
| 22 | pub z : f64 | |
| 23 | } | |
| 24 | ||
| 25 | impl CylCoords { | |
| 26 | #[inline] | |
| 27 | pub fn to_cartesian(&self) -> Loc<f64, 3> { | |
| 28 | let &CylCoords{r, angle, z} = self; | |
| 29 | [r * angle.cos(), r * angle.sin(), z].into() | |
| 30 | } | |
| 31 | ||
| 32 | #[inline] | |
| 33 | #[allow(dead_code)] | |
| 34 | pub fn from_cartesian(coords : Loc<f64, 3>) -> Self { | |
| 35 | let [x, y, z] = coords.into(); | |
| 36 | let r = (x*x + y*y).sqrt(); | |
| 37 | let angle = y.atan2(x); | |
| 38 | CylCoords {r, angle, z} | |
| 39 | } | |
| 40 | } | |
| 41 | ||
| 42 | /// Coordinates on a cap | |
| 43 | #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] | |
| 44 | pub struct CapPoint { | |
| 45 | pub r : f64, | |
| 46 | pub angle : Angle | |
| 47 | } | |
| 48 | ||
| 49 | #[inline] | |
| 50 | fn rotate(φ : f64, Loc([x, y]) : Loc<f64, 2>) -> Loc<f64, 2> { | |
| 51 | let sin_φ = φ.sin(); | |
| 52 | let cos_φ = φ.cos(); | |
| 53 | [cos_φ * x - sin_φ * y, sin_φ * x + cos_φ * y].into() | |
| 54 | } | |
| 55 | ||
| 56 | impl CapPoint { | |
| 57 | #[inline] | |
| 58 | /// Convert to cylindrical coordinates given z coordinate | |
| 59 | fn cyl_coords(&self, z : f64) -> CylCoords { | |
| 60 | let CapPoint { r, angle } = *self; | |
| 61 | CylCoords { r, angle, z } | |
| 62 | } | |
| 63 | ||
| 64 | #[inline] | |
| 65 | /// Convert to cylindrical coordinates given z coordinate | |
| 66 | fn cartesian_coords(&self) -> Loc<f64, 2> { | |
| 67 | let CapPoint { r, angle } = *self; | |
| 68 | [r * angle.cos(), r * angle.sin()].into() | |
| 69 | } | |
| 70 | ||
| 71 | #[inline] | |
| 72 | #[allow(dead_code)] | |
| 73 | /// Convert to cylindrical coordinates given z coordinate | |
| 74 | fn from_cartesian(coords : Loc<f64, 2>) -> Self { | |
| 75 | let [x, y] = coords.into(); | |
| 76 | let r = (x*x + y*y).sqrt(); | |
| 77 | let angle = y.atan2(x); | |
| 78 | CapPoint { r, angle } | |
| 79 | } | |
| 80 | ||
| 81 | #[inline] | |
| 82 | /// Calculate the vector between two points on the cap | |
| 83 | fn log(&self, other : &CapPoint) -> Loc<f64, 2> { | |
| 84 | other.cartesian_coords() - self.cartesian_coords() | |
| 85 | } | |
| 86 | ||
| 87 | #[inline] | |
| 88 | /// Calculate partial exponential map until boundary. | |
| 89 | /// Returns the final point within the cap as well as a remaining tangent on | |
| 90 | /// the side of the cylinder, if `t` wasn't fully used. | |
| 91 | fn partial_exp(&self, r : f64, t : &Tangent) -> (CapPoint, Option<Tangent>) { | |
| 92 | let q = self.cartesian_coords() + t; | |
| 93 | let n = q.norm2(); | |
| 94 | if n <= r { | |
| 95 | (Self::from_cartesian(q), None) | |
| 96 | } else { | |
| 97 | let p = q * r / n; | |
| 98 | (Self::from_cartesian(p), Some(q - p)) | |
| 99 | } | |
| 100 | } | |
| 101 | ||
| 102 | #[inline] | |
| 103 | /// Convert tangent from side tangent to cap tangent | |
| 104 | fn tangent_from_side(&self, top : bool, t : Tangent) -> Tangent { | |
| 105 | if top { | |
| 106 | // The angle is such that down would be rotated to self.angle, counterclockwise | |
| 107 | // The new tangent is R[down + t] - R[down] = Rt. | |
| 108 | rotate(self.angle+f64::PI/2.0, t) | |
| 109 | } else { | |
| 110 | // The angle is such that up would be rotated to self.angle, clockwise | |
| 111 | rotate(self.angle-f64::PI/2.0, t) | |
| 112 | } | |
| 113 | } | |
| 114 | ||
| 115 | #[inline] | |
| 116 | /// Convert tangent from cap tangent to tangent tangent | |
| 117 | fn tangent_to_side(&self, top : bool, t : Tangent) -> Tangent { | |
| 118 | if top { | |
| 119 | // The angle is such that self.angle would be rotated to down, clockwise | |
| 120 | rotate(-self.angle-f64::PI/2.0, t) | |
| 121 | } else { | |
| 122 | // The angle is such that self.angle would be rotated to up, counterclockwise | |
| 123 | rotate(f64::PI/2.0-self.angle, t) | |
| 124 | } | |
| 125 | } | |
| 126 | } | |
| 127 | ||
| 128 | /// Coordinates on a side | |
| 129 | #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] | |
| 130 | pub struct SidePoint { | |
| 131 | pub z : f64, | |
| 132 | pub angle : Angle | |
| 133 | } | |
| 134 | ||
| 135 | #[inline] | |
| 136 | fn anglediff(mut φ1 : f64, mut φ2 : f64) -> f64 { | |
| 137 | let π = f64::PI; | |
| 138 | φ1 = normalise_angle(φ1); | |
| 139 | φ2 = normalise_angle(φ2); | |
| 140 | let α = φ2 - φ1; | |
| 141 | if α >= 0.0 { | |
| 142 | if α <= π { | |
| 143 | α | |
| 144 | } else { | |
| 145 | α - 2.0 * π | |
| 146 | } | |
| 147 | } else { | |
| 148 | if α >= -π { | |
| 149 | α | |
| 150 | } else { | |
| 151 | 2.0 * π + α | |
| 152 | } | |
| 153 | } | |
| 154 | } | |
| 155 | ||
| 156 | #[inline] | |
| 157 | pub fn normalise_angle(φ : f64) -> f64 { | |
| 158 | let π = f64::PI; | |
| 159 | φ.rem_euclid(2.0 * π) | |
| 160 | } | |
| 161 | ||
| 162 | impl SidePoint { | |
| 163 | #[inline] | |
| 164 | /// Convert to cylindrical coordinates given radius | |
| 165 | fn cyl_coords(&self, r : f64) -> CylCoords { | |
| 166 | let SidePoint { z, angle } = *self; | |
| 167 | CylCoords { r, angle, z } | |
| 168 | } | |
| 169 | ||
| 170 | #[inline] | |
| 171 | /// Calculate tangent vector between two points on the side, given radius | |
| 172 | fn log(&self, r : f64, other : &SidePoint) -> Loc<f64, 2> { | |
| 173 | let SidePoint{ z : z1, angle : angle1 } = *self; | |
| 174 | let SidePoint{ z : z2, angle : angle2 } = *other; | |
| 175 | let φ = anglediff(angle1, angle2); | |
| 176 | // TODO: is this correct? | |
| 177 | [r*φ, z2-z1].into() | |
| 178 | } | |
| 179 | ||
| 180 | #[inline] | |
| 181 | /// Calculate partial exponential map under boundary | |
| 182 | /// Returns a point on the next face, as well as a remaining tangent on | |
| 183 | /// the side of the cylinder, if `t` wasn't fully used. | |
| 184 | fn partial_exp(&self, r : f64, (a, b) : (f64, f64), t : &Tangent) | |
| 185 | -> (SidePoint, Option<Tangent>) | |
| 186 | { | |
| 187 | assert!(a <= self.z && self.z <= b); | |
| 188 | let Loc([_, h]) = *t; | |
| 189 | let s = if h > 0.0 { | |
| 190 | ((b - self.z)/h).min(1.0) | |
| 191 | } else if h < 0.0 { | |
| 192 | ((a - self.z)/h).min(1.0) | |
| 193 | } else { | |
| 194 | 1.0 | |
| 195 | }; | |
| 196 | let d = t * s; | |
| 197 | let p = self.unflatten(r, d); | |
| 198 | if s < 1.0 { | |
| 199 | (p, Some(t - d)) | |
| 200 | } else { | |
| 201 | (p, None) | |
| 202 | } | |
| 203 | } | |
| 204 | ||
| 205 | #[inline] | |
| 206 | /// Unflattens another point in the local coordinate system of self | |
| 207 | fn unflatten(&self, r : f64, Loc([v, h]) : Loc<f64, 2>) -> Self { | |
| 208 | SidePoint{ z : self.z + h, angle : normalise_angle(self.angle + v / r) } | |
| 209 | } | |
| 210 | ||
| 211 | } | |
| 212 | ||
| 213 | /// Point on a [`Cylinder`] | |
| 214 | #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] | |
| 215 | pub enum Point { | |
| 216 | Top(CapPoint), | |
| 217 | Bottom(CapPoint), | |
| 218 | Side(SidePoint), | |
| 219 | } | |
| 220 | ||
| 221 | /// Face on a [`Cylinder`] | |
| 222 | #[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize_repr, Deserialize_repr)] | |
| 223 | #[repr(u8)] | |
| 224 | pub enum Face { | |
| 225 | Top, | |
| 226 | Bottom, | |
| 227 | Side, | |
| 228 | } | |
| 229 | ||
| 230 | #[derive(Clone, Debug, PartialEq)] | |
| 231 | pub struct OnCylinder<'a> { | |
| 232 | cylinder : &'a Cylinder, | |
| 233 | point : Point, | |
| 234 | } | |
| 235 | ||
| 236 | ||
| 237 | /// Cylinder configuration | |
| 238 | #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] | |
| 239 | pub struct CylinderConfig { | |
| 240 | pub newton_iters : usize, | |
| 241 | } | |
| 242 | ||
| 243 | impl Default for CylinderConfig { | |
| 244 | fn default() -> Self { | |
| 245 | CylinderConfig { newton_iters : 10 } | |
| 246 | } | |
| 247 | } | |
| 248 | ||
| 249 | /// A cylinder | |
| 250 | #[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] | |
| 251 | pub struct Cylinder { | |
| 252 | /// Radius of the cylinder | |
| 253 | pub radius : f64, | |
| 254 | /// Height of the cylinder | |
| 255 | pub height : f64, | |
| 256 | /// Configuration for numerical methods | |
| 257 | pub config : CylinderConfig | |
| 258 | } | |
| 259 | ||
| 260 | ||
| 261 | impl std::fmt::Display for Face { | |
| 262 | fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { | |
| 263 | use Face::*; | |
| 264 | let s = match *self { | |
| 265 | Top => "Top", | |
| 266 | Bottom => "Bottom", | |
| 267 | Side => "Side", | |
| 268 | }; | |
| 269 | write!(f, "{}", s) | |
| 270 | } | |
| 271 | } | |
| 272 | ||
| 273 | impl Point { | |
| 274 | fn face(&self) -> Face { | |
| 275 | match *self { | |
| 276 | Point::Top(..) => Face::Top, | |
| 277 | Point::Bottom(_) => Face::Bottom, | |
| 278 | Point::Side(_) => Face::Side, | |
| 279 | } | |
| 280 | } | |
| 281 | } | |
| 282 | ||
| 283 | impl<'a> FacedManifoldPoint for OnCylinder<'a> { | |
| 284 | type Face = Face; | |
| 285 | /// Returns the face of this point. | |
| 286 | fn face(&self) -> Face { | |
| 287 | self.point.face() | |
| 288 | } | |
| 289 | } | |
| 290 | ||
| 291 | // Tangent vector | |
| 292 | type Tangent = Loc<f64, 2>; | |
| 293 | ||
| 294 | #[inline] | |
| 295 | fn best_tangent<I>(tangents : I) -> (Tangent, f64) | |
| 296 | where I : IntoIterator<Item = Tangent> { | |
| 297 | tangents.into_iter() | |
| 298 | .map(|t| (t, t.norm(L2))) | |
| 299 | .reduce(|a@(_, la), b@(_, lb)| if la < lb { a } else { b }) | |
| 300 | .unwrap() | |
| 301 | } | |
| 302 | ||
| 303 | /// Swap the elements of a two-tuple | |
| 304 | #[inline] | |
| 305 | fn swap<A>((a, b) : (A, A)) -> (A, A) { | |
| 306 | (b, a) | |
| 307 | } | |
| 308 | ||
| 309 | #[inline] | |
| 310 | fn indistinguishable(a : f64, b : f64) -> bool { | |
| 311 | a > b - f64::EPSILON && a < b + f64::EPSILON | |
| 312 | } | |
| 313 | ||
| 314 | impl Cylinder { | |
| 315 | /// Return the cylindrical coordinates of `point` on this cylinder | |
| 316 | fn cyl_coords(&self, point : &Point) -> CylCoords { | |
| 317 | match *point { | |
| 318 | Point::Top(cap) => { cap.cyl_coords(self.top_z()) }, | |
| 319 | Point::Bottom(cap) => { cap.cyl_coords(self.bottom_z()) }, | |
| 320 | Point::Side(side) => { side.cyl_coords(self.radius) }, | |
| 321 | } | |
| 322 | } | |
| 323 | ||
| 324 | #[inline] | |
| 325 | pub fn top_z(&self) -> f64 { | |
| 326 | self.height / 2.0 | |
| 327 | } | |
| 328 | ||
| 329 | #[inline] | |
| 330 | pub fn bottom_z(&self) -> f64 { | |
| 331 | -self.height / 2.0 | |
| 332 | } | |
| 333 | ||
| 334 | /// Find angle where a geodesic from `side` to `(cap, z)` crosses the cap edge. | |
| 335 | /// | |
| 336 | /// Uses `newton_sym1x1`. | |
| 337 | fn side_cap_crossing( | |
| 338 | &self, | |
| 339 | side : &SidePoint, | |
| 340 | cap : &CapPoint, z : f64, // `z` is the z coordinate of cap | |
| 341 | ) -> Angle { | |
| 342 | let &SidePoint { z : z_1, angle : φ_1 } = side; | |
| 343 | let &CapPoint { r : r_2, angle : φ_2 } = cap; | |
| 344 | assert_ne!(z, z_1); | |
| 345 | let d_1 = z - z_1; | |
| 346 | let d2_1 = d_1 * d_1; | |
| 347 | let r = self.radius; | |
| 348 | let r2 = r * r; | |
| 349 | let r2_2 = r_2 * r_2; | |
| 350 | let rr_2 = r * r_2; | |
| 351 | ||
| 352 | let g = |α_1 : f64| { | |
| 353 | let ψ = φ_2 - φ_1 - α_1; | |
| 354 | let ψ_cos = ψ.cos(); | |
| 355 | let ψ_sin = ψ.sin(); | |
| 356 | let ψ_sin2 = ψ_sin * ψ_sin; | |
| 357 | let ψ_cos2 = ψ_cos * ψ_cos; | |
| 358 | let α2_1 = α_1 * α_1; | |
| 359 | let c = d2_1 + r2 * α2_1; | |
| 360 | let e = r2 + r2_2 - 2.0 * rr_2 * ψ_cos; | |
| 361 | let g = r2 * α_1 / c.sqrt() - rr_2 * ψ_sin / e.sqrt(); | |
| 362 | let h = r2 * d2_1 / c.powf(3.0/2.0) | |
| 363 | + r * r_2 * ((r2 + r2_2) * ψ_cos - rr_2 * (ψ_sin2 - 2.0 * ψ_cos2)) | |
| 364 | / e.powf(3.0/2.0); | |
| 365 | (h, g) | |
| 366 | }; | |
| 367 | ||
| 368 | let α_1 = newton_sym1x1(g, 0.0, self.config.newton_iters); | |
| 369 | normalise_angle(φ_1 + α_1) | |
| 370 | ||
| 371 | } | |
| 372 | ||
| 373 | /// Find angles where the geodesic passing through a cap at height `z` from `side1` to `side2` | |
| 374 | /// crosses the cap edge. **Panics if `side2.angle < side1.angle`.** | |
| 375 | /// | |
| 376 | /// Uses `newton_sym2x2`. | |
| 377 | fn side_cap_side_crossing( | |
| 378 | &self, | |
| 379 | side1 : &SidePoint, | |
| 380 | z : f64, | |
| 381 | side2 : &SidePoint | |
| 382 | ) -> (Angle, Angle) { | |
| 383 | let &SidePoint { z : z_1, angle : φ_1 } = side1; | |
| 384 | let &SidePoint { z : z_2, angle : φ_2 } = side2; | |
| 385 | assert!(φ_2 >= φ_1); | |
| 386 | assert_ne!(z_1, z); | |
| 387 | assert_ne!(z_2, z); | |
| 388 | let r = self.radius; | |
| 389 | let r2 = r * r; | |
| 390 | let d_1 = z - z_1; | |
| 391 | let d_2 = z - z_2; | |
| 392 | let d2_1 = d_1 * d_1; | |
| 393 | let d2_2 = d_2 * d_2; | |
| 394 | let g = |α_1 : f64, α_2 : f64| { | |
| 395 | let α2_1 = α_1 * α_1; | |
| 396 | let α2_2 = α_2 * α_2; | |
| 397 | let ψ = (α_1 + α_2 + φ_1 - φ_2) / 2.0; | |
| 398 | let ψ_sin = ψ.sin(); | |
| 399 | let ψ_cos = ψ.cos(); | |
| 400 | let c_1 = d2_1 + r2 * α2_1; | |
| 401 | let c_2 = d2_2 + r2 * α2_2; | |
| 402 | let g_1 = r2 * α_1 / c_1.sqrt() - r * ψ_cos; | |
| 403 | let g_2 = r2 * α_2 / c_2.sqrt() - r * ψ_cos; | |
| 404 | let h_12 = (r / 2.0) * ψ_sin; | |
| 405 | let h_11 = r2 * d2_1 / c_1.powf(3.0 / 2.0) + h_12; | |
| 406 | let h_22 = r2 * d2_2 / c_2.powf(3.0 / 2.0) + h_12; | |
| 407 | ([h_11, h_12, h_22], [g_1, g_2]) | |
| 408 | }; | |
| 409 | ||
| 410 | let [α_1, α_2] = newton_sym2x2(g, [0.0, 0.0], self.config.newton_iters); | |
| 411 | (normalise_angle(φ_1 + α_1), normalise_angle(φ_2 + α_2)) | |
| 412 | ||
| 413 | } | |
| 414 | ||
| 415 | /// Find angles where the geodesic passing through the side from `cap1` at height `z_1` | |
| 416 | /// to `cap2` at height `z_2` crosses the cap edges. | |
| 417 | /// **Panics if `cap2.angle < cap1.angle`.** | |
| 418 | /// | |
| 419 | /// Uses `newton_sym2x2`. | |
| 420 | fn cap_side_cap_crossing( | |
| 421 | &self, | |
| 422 | cap1 : &CapPoint, z_1 : f64, | |
| 423 | cap2 : &CapPoint, z_2 : f64, | |
| 424 | init_by_cap2 : bool | |
| 425 | ) -> (Angle, Angle) { | |
| 426 | let r = self.radius; | |
| 427 | let &CapPoint { r : r_1, angle : φ_1 } = cap1; | |
| 428 | let &CapPoint { r : r_2, angle : φ_2 } = cap2; | |
| 429 | assert!(φ_2 >= φ_1); | |
| 430 | assert_ne!(r_1, r); | |
| 431 | assert_ne!(r_2, r); | |
| 432 | assert_ne!(z_2, z_1); | |
| 433 | if r_1 == 0.0 && r_2 == 0.0 { | |
| 434 | // Singular case: both points are in the middle of the caps. | |
| 435 | return (φ_1, φ_1) | |
| 436 | } | |
| 437 | let r2 = r * r; | |
| 438 | let d = (z_2 - z_1).abs(); | |
| 439 | let d2 = d * d; | |
| 440 | let r2_1 = r_1 * r_1; | |
| 441 | let r2_2 = r_2 * r_2; | |
| 442 | let rr_1 = r * r_1; | |
| 443 | let rr_2 = r * r_2; | |
| 444 | let f = |α_1 : f64, α_2 : f64| { | |
| 445 | let cos_α1 = α_1.cos(); | |
| 446 | let sin_α1 = α_1.sin(); | |
| 447 | let cos_α2 = α_2.cos(); | |
| 448 | let sin_α2 = α_2.sin(); | |
| 449 | //let cos2_α1 = cos_α1 * cos_α1; | |
| 450 | let sin2_α1 = sin_α1 * sin_α1; | |
| 451 | //let cos2_α2 = cos_α2 * cos_α2; | |
| 452 | let sin2_α2 = sin_α2 * sin_α2; | |
| 453 | let ψ = φ_2 - φ_1 - α_1 - α_2; | |
| 454 | let ψ2 = ψ * ψ; | |
| 455 | let ψ2r2 = ψ2 * r2; | |
| 456 | //let r4 = r2 * r2; | |
| 457 | let b = d2 + ψ2r2; | |
| 458 | let c = r2 * ψ / b.sqrt(); | |
| 459 | let e_1 = r2 + r2_1 - 2.0 * rr_1 * cos_α1; | |
| 460 | let e_2 = r2 + r2_2 - 2.0 * rr_2 * cos_α2; | |
| 461 | let g_1 = rr_1 * sin_α1 / e_1.sqrt() - c; | |
| 462 | let g_2 = rr_2 * sin_α2 / e_2.sqrt() - c; | |
| 463 | let h_12 = r2 * (1.0 - ψ2r2 / b) / b.sqrt(); | |
| 464 | // let h_11 = rr_1 * ( (r2 + r2_1) * cos_α1 - rr_1 * ( sin2_α1 + 2.0 * cos2_α1) ) | |
| 465 | // / e_1.powf(3.0/2.0) + h_12; | |
| 466 | // let h_22 = rr_2 * ( (r2 + r2_2) * cos_α2 - rr_2 * ( sin2_α2 + 2.0 * cos2_α2) ) | |
| 467 | // / e_2.powf(3.0/2.0) + h_12; | |
| 468 | // let h_11 = rr_1 * cos_α1 / e_1.sqrt() - rr_1*rr_1 * sin2_α1 / e_1.powf(3.0/2.0) + h_12; | |
| 469 | // let h_22 = rr_2 * cos_α2 / e_2.sqrt() - rr_2*rr_2 * sin2_α2 / e_2.powf(3.0/2.0) + h_12; | |
| 470 | let h_11 = rr_1 * (cos_α1 - rr_1 * sin2_α1 / e_1) / e_1.sqrt() + h_12; | |
| 471 | let h_22 = rr_2 * (cos_α2 - rr_2 * sin2_α2 / e_2) / e_2.sqrt() + h_12; | |
| 472 | ([h_11, h_12, h_22], [g_1, g_2]) | |
| 473 | }; | |
| 474 | ||
| 475 | let α_init = if init_by_cap2 { | |
| 476 | [φ_2 - φ_1, 0.0] | |
| 477 | } else { | |
| 478 | [0.0, φ_2 - φ_1] | |
| 479 | }; | |
| 480 | let [α_1, α_2] = newton_sym2x2(f, α_init, self.config.newton_iters); | |
| 481 | (normalise_angle(φ_1 + α_1), normalise_angle(φ_2 - α_2)) | |
| 482 | } | |
| 483 | ||
| 484 | fn cap_side_log( | |
| 485 | &self, | |
| 486 | cap : &CapPoint, (z, top) : (f64, bool), | |
| 487 | side : &SidePoint | |
| 488 | ) -> Tangent { | |
| 489 | let r = self.radius; | |
| 490 | if indistinguishable(side.z, z) { | |
| 491 | // Degenerate case | |
| 492 | let capedge = CapPoint{ angle : side.angle, r }; | |
| 493 | cap.log(&capedge) | |
| 494 | } else if indistinguishable(r, cap.r) | |
| 495 | && anglediff(side.angle, cap.angle).abs() < f64::PI/2.0 { | |
| 496 | // Degenerate case | |
| 497 | let sideedge = SidePoint{ angle : cap.angle, z}; | |
| 498 | cap.tangent_from_side(top, sideedge.log(r, side)) | |
| 499 | } else { | |
| 500 | let φ = self.side_cap_crossing(side, cap, z); | |
| 501 | let capedge = CapPoint{ angle : φ, r }; | |
| 502 | let sideedge = SidePoint{ angle : φ, z }; | |
| 503 | let t1 = cap.log(&capedge); | |
| 504 | let t2 = sideedge.log(r, side); | |
| 505 | // Either option should give the same result, but the first one avoids division. | |
| 506 | t1 + capedge.tangent_from_side(top, t2) | |
| 507 | // let n = t1.norm(L2); | |
| 508 | // (t1/n)*(n + t2.norm(L2)) | |
| 509 | } | |
| 510 | } | |
| 511 | ||
| 512 | fn side_cap_log( | |
| 513 | &self, | |
| 514 | side : &SidePoint, | |
| 515 | cap : &CapPoint, (z, top) : (f64, bool), | |
| 516 | ) -> Tangent { | |
| 517 | let r = self.radius; | |
| 518 | if indistinguishable(side.z, z) { | |
| 519 | // Degenerate case | |
| 520 | let capedge = CapPoint{ angle : side.angle, r }; | |
| 521 | capedge.tangent_to_side(top, capedge.log(cap)) | |
| 522 | } else if indistinguishable(r, cap.r) | |
| 523 | && anglediff(side.angle, cap.angle).abs() < f64::PI/2.0 { | |
| 524 | // Degenerate case | |
| 525 | side.log(r, &SidePoint{ z, angle : cap.angle }) | |
| 526 | } else { | |
| 527 | let φ = self.side_cap_crossing(side, cap, z); | |
| 528 | let capedge = CapPoint{ angle : φ, r }; | |
| 529 | let sideedge = SidePoint{ angle : φ, z }; | |
| 530 | let t1 = side.log(r, &sideedge); | |
| 531 | let t2 = capedge.log(cap); | |
| 532 | // Either option should give the same result, but the first one avoids division. | |
| 533 | t1 + capedge.tangent_to_side(top, t2) | |
| 534 | // let n = t1.norm(L2); | |
| 535 | // (t1/n)*(n + t2.norm(L2)) | |
| 536 | } | |
| 537 | } | |
| 538 | ||
| 539 | fn side_cap_side_log( | |
| 540 | &self, | |
| 541 | side1 : &SidePoint, | |
| 542 | (z, top) : (f64, bool), | |
| 543 | side2 : &SidePoint | |
| 544 | ) -> Tangent { | |
| 545 | let r = self.radius; | |
| 546 | if indistinguishable(side1.z, z) { | |
| 547 | // Degenerate case | |
| 548 | let capedge1 = CapPoint{ angle : side1.angle, r }; | |
| 549 | capedge1.tangent_to_side(top, self.cap_side_log(&capedge1, (z, top), side2)) | |
| 550 | } else if indistinguishable(side2.z, z) { | |
| 551 | // Degenerate case | |
| 552 | let capedge2 = CapPoint{ angle : side2.angle, r }; | |
| 553 | self.side_cap_log(side1, &capedge2, (z, top)) | |
| 554 | } else { | |
| 555 | let (φ1, φ2) = if side2.angle >= side1.angle { | |
| 556 | self.side_cap_side_crossing(side1, z, side2) | |
| 557 | } else { | |
| 558 | swap(self.side_cap_side_crossing(side2, z, side1)) | |
| 559 | }; | |
| 560 | let capedge1 = CapPoint{ angle : φ1, r }; | |
| 561 | let sideedge1 = SidePoint{ angle : φ1, z }; | |
| 562 | let capedge2 = CapPoint{ angle : φ2, r }; | |
| 563 | let sideedge2 = SidePoint{ angle : φ2, z }; | |
| 564 | let t1 = side1.log(r, &sideedge1); | |
| 565 | let t2 = capedge1.log(&capedge2); | |
| 566 | let t3 = sideedge2.log(r, &side2); | |
| 567 | // Any option should give the same result, but the first one avoids division. | |
| 568 | // t1 + capedge1.tangent_to_side(top, t2 + capedge2.tangent_from_side(top, t3)) | |
| 569 | // | |
| 570 | // let n = t2.norm(L2); | |
| 571 | // t1 + capedge1.tangent_to_side(top, (t2/n)*(n + t3.norm(L2))) | |
| 572 | // | |
| 573 | let n = t1.norm(L2); | |
| 574 | (t1/n)*(n + t2.norm(L2) + t3.norm(L2)) | |
| 575 | // | |
| 576 | // let n = t1.norm(L2); | |
| 577 | // let t23 = t2 + capedge2.tangent_from_side(top, t3); | |
| 578 | // (t1/n)*(n + t23.norm(L2)) | |
| 579 | } | |
| 580 | } | |
| 581 | ||
| 582 | fn cap_side_cap_log( | |
| 583 | &self, | |
| 584 | cap1 : &CapPoint, (z1, top1) : (f64, bool), | |
| 585 | cap2 : &CapPoint, (z2, top2) : (f64, bool), | |
| 586 | init_by_cap2 : bool, | |
| 587 | ) -> Tangent { | |
| 588 | let r = self.radius; | |
| 589 | if indistinguishable(cap1.r, r) { | |
| 590 | // Degenerate case | |
| 591 | let sideedge1 = SidePoint{ angle : cap1.angle, z : z1 }; | |
| 592 | cap1.tangent_from_side(top1, self.side_cap_log(&sideedge1, cap2, (z2, top2))) | |
| 593 | } else if indistinguishable(cap2.r, r) { | |
| 594 | // Degenerate case | |
| 595 | let sideedge2 = SidePoint{ angle : cap2.angle, z : z2 }; | |
| 596 | self.cap_side_log(cap1, (z1, top1), &sideedge2) | |
| 597 | } else { | |
| 598 | let (φ1, φ2) = if cap2.angle >= cap1.angle { | |
| 599 | self.cap_side_cap_crossing(cap1, z1, cap2, z2, init_by_cap2) | |
| 600 | } else { | |
| 601 | swap(self.cap_side_cap_crossing(cap2, z2, cap1, z1, !init_by_cap2)) | |
| 602 | }; | |
| 603 | let sideedge1 = SidePoint{ angle : φ1, z : z1 }; | |
| 604 | let capedge1 = CapPoint{ angle : φ1, r }; | |
| 605 | let sideedge2 = SidePoint{ angle : φ2, z : z2}; | |
| 606 | let capedge2 = CapPoint{ angle : φ2, r }; | |
| 607 | let t1 = cap1.log(&capedge1); | |
| 608 | let t2 = sideedge1.log(r, &sideedge2); | |
| 609 | let t3 = capedge2.log(cap2); | |
| 610 | // Either option should give the same result, but the first one avoids division. | |
| 611 | t1 + capedge1.tangent_from_side(top1, t2 + capedge2.tangent_to_side(top2, t3)) | |
| 612 | //let n = t1.norm(L2); | |
| 613 | //(t1/n)*(n + t2.norm(L2) + t3.norm(L2)) | |
| 614 | } | |
| 615 | } | |
| 616 | ||
| 617 | /// Calculates both the logarithmic map and distance to another point | |
| 618 | fn log_dist(&self, source : &Point, destination : &Point) -> (Tangent, f64) { | |
| 619 | use Point::*; | |
| 620 | match (source, destination) { | |
| 621 | (Top(cap1), Top(cap2)) => { | |
| 622 | best_tangent([cap1.log(cap2)]) | |
| 623 | }, | |
| 624 | (Bottom(cap1), Bottom(cap2)) => { | |
| 625 | best_tangent([cap1.log(cap2)]) | |
| 626 | }, | |
| 627 | (Bottom(cap), Side(side)) => { | |
| 628 | best_tangent([self.cap_side_log(cap, (self.bottom_z(), false), side)]) | |
| 629 | }, | |
| 630 | (Top(cap), Side(side)) => { | |
| 631 | best_tangent([self.cap_side_log(cap, (self.top_z(), true), side)]) | |
| 632 | }, | |
| 633 | (Side(side), Bottom(cap)) => { | |
| 634 | best_tangent([self.side_cap_log(side, cap, (self.bottom_z(), false))]) | |
| 635 | }, | |
| 636 | (Side(side), Top(cap)) => { | |
| 637 | best_tangent([self.side_cap_log(side, cap, (self.top_z(), true))]) | |
| 638 | }, | |
| 639 | (Side(side1), Side(side2)) => { | |
| 640 | best_tangent([ | |
| 641 | side1.log(self.radius, side2), | |
| 642 | self.side_cap_side_log(side1, (self.top_z(), true), side2), | |
| 643 | self.side_cap_side_log(side1, (self.bottom_z(), false), side2), | |
| 644 | ]) | |
| 645 | }, | |
| 646 | (Top(cap1), Bottom(cap2)) => { | |
| 647 | best_tangent([ | |
| 648 | // We try a few possible initialisations for Newton | |
| 649 | self.cap_side_cap_log( | |
| 650 | cap1, (self.top_z(), true), | |
| 651 | cap2, (self.bottom_z(), false), | |
| 652 | false | |
| 653 | ), | |
| 654 | self.cap_side_cap_log( | |
| 655 | cap1, (self.top_z(), true), | |
| 656 | cap2, (self.bottom_z(), false), | |
| 657 | true | |
| 658 | ), | |
| 659 | ]) | |
| 660 | }, | |
| 661 | (Bottom(cap1), Top(cap2)) => { | |
| 662 | best_tangent([ | |
| 663 | // We try a few possible initialisations for Newton | |
| 664 | self.cap_side_cap_log( | |
| 665 | cap1, (self.bottom_z(), false), | |
| 666 | cap2, (self.top_z(), true), | |
| 667 | false | |
| 668 | ), | |
| 669 | self.cap_side_cap_log( | |
| 670 | cap1, (self.bottom_z(), false), | |
| 671 | cap2, (self.top_z(), true), | |
| 672 | true | |
| 673 | ), | |
| 674 | ]) | |
| 675 | }, | |
| 676 | } | |
| 677 | } | |
| 678 | ||
| 679 | #[allow(unreachable_code)] | |
| 680 | #[allow(unused_variables)] | |
| 681 | fn partial_exp(&self, point : Point, t : Tangent) -> (Point, Option<Tangent>) { | |
| 682 | match point { | |
| 683 | Point::Top(cap) => { | |
| 684 | let (cap_new, t_new_basis) = cap.partial_exp(self.radius, &t); | |
| 685 | match t_new_basis { | |
| 686 | None => (Point::Top(cap_new), None), | |
| 687 | Some(t_new) => { | |
| 688 | let side_new = SidePoint{ angle : cap_new.angle, z : self.top_z() }; | |
| 689 | (Point::Side(side_new), Some(cap_new.tangent_to_side(true, t_new))) | |
| 690 | } | |
| 691 | } | |
| 692 | }, | |
| 693 | Point::Bottom(cap) => { | |
| 694 | let (cap_new, t_new_basis) = cap.partial_exp(self.radius, &t); | |
| 695 | match t_new_basis { | |
| 696 | None => (Point::Bottom(cap_new), None), | |
| 697 | Some(t_new) => { | |
| 698 | let side_new = SidePoint{ angle : cap_new.angle, z : self.bottom_z() }; | |
| 699 | (Point::Side(side_new), Some(cap_new.tangent_to_side(false, t_new))) | |
| 700 | } | |
| 701 | } | |
| 702 | }, | |
| 703 | Point::Side(side) => { | |
| 704 | let lims = (self.bottom_z(), self.top_z()); | |
| 705 | let (side_new, t_new_basis) = side.partial_exp(self.radius, lims, &t); | |
| 706 | match t_new_basis { | |
| 707 | None => (Point::Side(side_new), None), | |
| 708 | Some(t_new) => { | |
| 709 | if side_new.z >= self.top_z() - f64::EPSILON { | |
| 710 | let cap_new = CapPoint { angle : side_new.angle, r : self.radius }; | |
| 711 | (Point::Top(cap_new), Some(cap_new.tangent_from_side(true, t_new))) | |
| 712 | } else { | |
| 713 | let cap_new = CapPoint { angle : side_new.angle, r : self.radius }; | |
| 714 | (Point::Bottom(cap_new), Some(cap_new.tangent_from_side(false, t_new))) | |
| 715 | } | |
| 716 | } | |
| 717 | } | |
| 718 | } | |
| 719 | } | |
| 720 | } | |
| 721 | ||
| 722 | fn exp(&self, point : &Point, tangent : &Tangent) -> Point { | |
| 723 | let mut p = *point; | |
| 724 | let mut t = *tangent; | |
| 725 | loop { | |
| 726 | (p, t) = match self.partial_exp(p, t) { | |
| 727 | (p, None) => break p, | |
| 728 | (p, Some(t)) => (p, t), | |
| 729 | }; | |
| 730 | } | |
| 731 | } | |
| 732 | ||
| 733 | /// Check that `point` has valid coordinates, and normalise angles | |
| 734 | pub fn normalise(&self, point : Point) -> Option<Point> { | |
| 735 | match point { | |
| 736 | Point::Side(side) => { | |
| 737 | let a = self.bottom_z(); | |
| 738 | let b = self.top_z(); | |
| 739 | (a <= side.z && side.z <= b).then(|| { | |
| 740 | Point::Side(SidePoint{ angle : normalise_angle(side.angle), .. side }) | |
| 741 | }) | |
| 742 | }, | |
| 743 | Point::Bottom(cap) => { | |
| 744 | (cap.r <= self.radius).then(|| { | |
| 745 | Point::Bottom(CapPoint{ angle : normalise_angle(cap.angle), .. cap }) | |
| 746 | }) | |
| 747 | }, | |
| 748 | Point::Top(cap) => { | |
| 749 | (cap.r <= self.radius).then(|| { | |
| 750 | Point::Top(CapPoint{ angle : normalise_angle(cap.angle), .. cap }) | |
| 751 | }) | |
| 752 | }, | |
| 753 | } | |
| 754 | } | |
| 755 | ||
| 756 | /// Convert `p` into a a point associated with the cylinder. | |
| 757 | /// | |
| 758 | /// May panic if the coordinates are invalid. | |
| 759 | pub fn point_on(&self, point : Point) -> OnCylinder<'_> { | |
| 760 | match self.normalise(point) { | |
| 761 | None => panic!("{point:?} not on cylinder {self:?}"), | |
| 762 | Some(point) => OnCylinder { cylinder : self, point } | |
| 763 | } | |
| 764 | } | |
| 765 | ||
| 766 | /// Convert `p` into a a point on side associated with the cylinder. | |
| 767 | /// | |
| 768 | /// May panic if the coordinates are invalid. | |
| 769 | pub fn point_on_side(&self, side : SidePoint) -> OnCylinder<'_> { | |
| 770 | self.point_on(Point::Side(side)) | |
| 771 | } | |
| 772 | ||
| 773 | /// Convert `p` into a a point on top associated with the cylinder. | |
| 774 | /// | |
| 775 | /// May panic if the coordinates are invalid. | |
| 776 | pub fn point_on_top(&self, cap : CapPoint) -> OnCylinder<'_> { | |
| 777 | self.point_on(Point::Top(cap)) | |
| 778 | } | |
| 779 | ||
| 780 | /// Convert `p` into a a point on bottom associated with the cylinder. | |
| 781 | /// | |
| 782 | /// May panic if the coordinates are invalid. | |
| 783 | pub fn point_on_bottom(&self, cap : CapPoint) -> OnCylinder<'_> { | |
| 784 | self.point_on(Point::Bottom(cap)) | |
| 785 | } | |
| 786 | ||
| 787 | /// Convert `p` into a a point on side associated with the cylinder. | |
| 788 | /// | |
| 789 | /// May panic if the coordinates are invalid. | |
| 790 | pub fn on_side(&self, angle : Angle, z : f64) -> OnCylinder<'_> { | |
| 791 | self.point_on_side(SidePoint{ angle, z }) | |
| 792 | } | |
| 793 | ||
| 794 | /// Convert `p` into a a point on top associated with the cylinder. | |
| 795 | /// | |
| 796 | /// May panic if the coordinates are invalid. | |
| 797 | pub fn on_top(&self, angle : Angle, r : f64) -> OnCylinder<'_> { | |
| 798 | self.point_on_top(CapPoint{ angle, r }) | |
| 799 | } | |
| 800 | ||
| 801 | /// Convert `p` into a a point on bottom associated with the cylinder. | |
| 802 | /// | |
| 803 | /// May panic if the coordinates are invalid. | |
| 804 | pub fn on_bottom(&self, angle : Angle, r : f64) -> OnCylinder<'_> { | |
| 805 | self.point_on_bottom(CapPoint{ angle, r }) | |
| 806 | } | |
| 807 | } | |
| 808 | ||
| 809 | impl<'a> OnCylinder<'a> { | |
| 810 | /// Return the cylindrical coordinates of this point | |
| 811 | pub fn cyl_coords(&self) -> CylCoords { | |
| 812 | self.cylinder.cyl_coords(&self.point) | |
| 813 | } | |
| 814 | } | |
| 815 | ||
| 816 | impl<'a> EmbeddedManifoldPoint for OnCylinder<'a> { | |
| 817 | type EmbeddedCoords = Loc<f64, 3>; | |
| 818 | ||
| 819 | /// Get embedded 3D coordinates | |
| 820 | fn embedded_coords(&self) -> Loc<f64, 3> { | |
| 821 | self.cyl_coords().to_cartesian() | |
| 822 | } | |
| 823 | } | |
| 824 | ||
| 825 | impl<'a> ManifoldPoint for OnCylinder<'a> { | |
| 826 | type Tangent = Tangent; | |
| 827 | ||
| 828 | fn exp(self, tangent : &Self::Tangent) -> Self { | |
| 829 | let cylinder = self.cylinder; | |
| 830 | let point = cylinder.exp(&self.point, tangent); | |
| 831 | OnCylinder { cylinder, point } | |
| 832 | } | |
| 833 | ||
| 834 | fn log(&self, other : &Self) -> Self::Tangent { | |
| 835 | assert!(self.cylinder == other.cylinder); | |
| 836 | self.cylinder.log_dist(&self.point, &other.point).0 | |
| 837 | } | |
| 838 | ||
| 839 | fn dist_to(&self, other : &Self) -> f64 { | |
| 840 | assert!(self.cylinder == other.cylinder); | |
| 841 | self.cylinder.log_dist(&self.point, &other.point).1 | |
| 842 | } | |
| 843 | ||
| 844 | fn tangent_origin(&self) -> Self::Tangent { | |
| 845 | Loc([0.0, 0.0]) | |
| 846 | } | |
| 847 | } | |
| 848 | ||
| 849 | #[cfg(test)] | |
| 850 | mod tests { | |
| 851 | use super::*; | |
| 852 | ||
| 853 | static CYL : Cylinder = Cylinder { | |
| 854 | radius : 1.0, | |
| 855 | height : 1.0, | |
| 856 | config : CylinderConfig { newton_iters : 20 }, | |
| 857 | }; | |
| 858 | ||
| 859 | fn check_distance(distance : f64, expected : f64) { | |
| 860 | let tol = 1e-10; | |
| 861 | assert!( | |
| 862 | (distance-expected).abs() < tol, | |
| 863 | "distance = {distance}, expected = {expected}" | |
| 864 | ); | |
| 865 | } | |
| 866 | ||
| 867 | // fn check_distance_less(distance : f64, expected : f64) { | |
| 868 | // let tol = 1e-10; | |
| 869 | // assert!( | |
| 870 | // distance < expected + tol, | |
| 871 | // "distance = {distance}, expected = {expected}" | |
| 872 | // ); | |
| 873 | // } | |
| 874 | ||
| 875 | #[test] | |
| 876 | fn intra_cap_log_dist() { | |
| 877 | let π = f64::PI; | |
| 878 | let p1 = CYL.on_top(0.0, 0.5); | |
| 879 | let p2 = CYL.on_top(π, 0.5); | |
| 880 | let p3 = CYL.on_top(π/2.0, 0.5); | |
| 881 | ||
| 882 | check_distance(p1.dist_to(&p2), 1.0); | |
| 883 | check_distance(p2.dist_to(&p3), 0.5_f64.sqrt()); | |
| 884 | check_distance(p3.dist_to(&p1), 0.5_f64.sqrt()); | |
| 885 | } | |
| 886 | ||
| 887 | #[test] | |
| 888 | fn intra_side_log_dist() { | |
| 889 | let π = f64::PI; | |
| 890 | let p1 = CYL.on_side(0.0, 0.0); | |
| 891 | let p2 = CYL.on_side(0.0, 0.4); | |
| 892 | let p3 = CYL.on_side(π/2.0, 0.0); | |
| 893 | ||
| 894 | check_distance(p1.dist_to(&p2), 0.4); | |
| 895 | check_distance(p1.dist_to(&p3), π/2.0*CYL.radius); | |
| 896 | } | |
| 897 | ||
| 898 | #[test] | |
| 899 | fn intra_side_over_cap_log_dist() { | |
| 900 | let π = f64::PI; | |
| 901 | let off = 0.05; | |
| 902 | let z = CYL.top_z() - off; | |
| 903 | let p1 = CYL.on_side(0.0, z); | |
| 904 | let p2 = CYL.on_side(π, z); | |
| 905 | ||
| 906 | check_distance(p1.dist_to(&p2), 2.0 * (CYL.radius + off)); | |
| 907 | } | |
| 908 | ||
| 909 | #[test] | |
| 910 | fn top_bottom_log_dist() { | |
| 911 | let π = f64::PI; | |
| 912 | let p1 = CYL.on_top(0.0, 0.0); | |
| 913 | let p2 = CYL.on_bottom(0.0, 0.0); | |
| 914 | ||
| 915 | check_distance(p1.dist_to(&p2), 2.0 * CYL.radius + CYL.height); | |
| 916 | ||
| 917 | let p1 = CYL.on_top(0.0, CYL.radius / 2.0); | |
| 918 | let p2 = CYL.on_bottom(0.0, CYL.radius / 2.0); | |
| 919 | let p3 = CYL.on_bottom(π, CYL.radius / 2.0); | |
| 920 | ||
| 921 | check_distance(p1.dist_to(&p2), CYL.radius + CYL.height); | |
| 922 | check_distance(p1.dist_to(&p3), 2.0 * CYL.radius + CYL.height); | |
| 923 | } | |
| 924 | ||
| 925 | #[test] | |
| 926 | fn top_side_log_dist() { | |
| 927 | let p1 = CYL.on_top(0.0, 0.0); | |
| 928 | let p2 = CYL.on_side(0.0, 0.0); | |
| 929 | ||
| 930 | check_distance(p1.dist_to(&p2), CYL.radius + CYL.height / 2.0); | |
| 931 | } | |
| 932 | } |