--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/cylinder.rs Wed Dec 04 23:19:46 2024 -0500 @@ -0,0 +1,932 @@ +/*! +Implementation of the surface of a 3D cylinder as a [`ManifoldPoint`]. +*/ + +use alg_tools::euclidean::Euclidean; +use serde_repr::*; +use serde::{Serialize, Deserialize}; +use alg_tools::loc::Loc; +use alg_tools::norms::{Norm, L2}; +use alg_tools::types::Float; +use crate::manifold::{ManifoldPoint, EmbeddedManifoldPoint, FacedManifoldPoint}; +use crate::newton::{newton_sym1x1, newton_sym2x2}; + +/// Angle +pub type Angle = f64; + +/// Cylindrical coordinates in ℝ^3 +#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] +pub struct CylCoords { + pub r : f64, + pub angle : Angle, + pub z : f64 +} + +impl CylCoords { + #[inline] + pub fn to_cartesian(&self) -> Loc<f64, 3> { + let &CylCoords{r, angle, z} = self; + [r * angle.cos(), r * angle.sin(), z].into() + } + + #[inline] + #[allow(dead_code)] + pub fn from_cartesian(coords : Loc<f64, 3>) -> Self { + let [x, y, z] = coords.into(); + let r = (x*x + y*y).sqrt(); + let angle = y.atan2(x); + CylCoords {r, angle, z} + } +} + +/// Coordinates on a cap +#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] +pub struct CapPoint { + pub r : f64, + pub angle : Angle +} + +#[inline] +fn rotate(φ : f64, Loc([x, y]) : Loc<f64, 2>) -> Loc<f64, 2> { + let sin_φ = φ.sin(); + let cos_φ = φ.cos(); + [cos_φ * x - sin_φ * y, sin_φ * x + cos_φ * y].into() +} + +impl CapPoint { + #[inline] + /// Convert to cylindrical coordinates given z coordinate + fn cyl_coords(&self, z : f64) -> CylCoords { + let CapPoint { r, angle } = *self; + CylCoords { r, angle, z } + } + + #[inline] + /// Convert to cylindrical coordinates given z coordinate + fn cartesian_coords(&self) -> Loc<f64, 2> { + let CapPoint { r, angle } = *self; + [r * angle.cos(), r * angle.sin()].into() + } + + #[inline] + #[allow(dead_code)] + /// Convert to cylindrical coordinates given z coordinate + fn from_cartesian(coords : Loc<f64, 2>) -> Self { + let [x, y] = coords.into(); + let r = (x*x + y*y).sqrt(); + let angle = y.atan2(x); + CapPoint { r, angle } + } + + #[inline] + /// Calculate the vector between two points on the cap + fn log(&self, other : &CapPoint) -> Loc<f64, 2> { + other.cartesian_coords() - self.cartesian_coords() + } + + #[inline] + /// Calculate partial exponential map until boundary. + /// Returns the final point within the cap as well as a remaining tangent on + /// the side of the cylinder, if `t` wasn't fully used. + fn partial_exp(&self, r : f64, t : &Tangent) -> (CapPoint, Option<Tangent>) { + let q = self.cartesian_coords() + t; + let n = q.norm2(); + if n <= r { + (Self::from_cartesian(q), None) + } else { + let p = q * r / n; + (Self::from_cartesian(p), Some(q - p)) + } + } + + #[inline] + /// Convert tangent from side tangent to cap tangent + fn tangent_from_side(&self, top : bool, t : Tangent) -> Tangent { + if top { + // The angle is such that down would be rotated to self.angle, counterclockwise + // The new tangent is R[down + t] - R[down] = Rt. + rotate(self.angle+f64::PI/2.0, t) + } else { + // The angle is such that up would be rotated to self.angle, clockwise + rotate(self.angle-f64::PI/2.0, t) + } + } + + #[inline] + /// Convert tangent from cap tangent to tangent tangent + fn tangent_to_side(&self, top : bool, t : Tangent) -> Tangent { + if top { + // The angle is such that self.angle would be rotated to down, clockwise + rotate(-self.angle-f64::PI/2.0, t) + } else { + // The angle is such that self.angle would be rotated to up, counterclockwise + rotate(f64::PI/2.0-self.angle, t) + } + } +} + +/// Coordinates on a side +#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] +pub struct SidePoint { + pub z : f64, + pub angle : Angle +} + +#[inline] +fn anglediff(mut φ1 : f64, mut φ2 : f64) -> f64 { + let π = f64::PI; + φ1 = normalise_angle(φ1); + φ2 = normalise_angle(φ2); + let α = φ2 - φ1; + if α >= 0.0 { + if α <= π { + α + } else { + α - 2.0 * π + } + } else { + if α >= -π { + α + } else { + 2.0 * π + α + } + } +} + +#[inline] +pub fn normalise_angle(φ : f64) -> f64 { + let π = f64::PI; + φ.rem_euclid(2.0 * π) +} + +impl SidePoint { + #[inline] + /// Convert to cylindrical coordinates given radius + fn cyl_coords(&self, r : f64) -> CylCoords { + let SidePoint { z, angle } = *self; + CylCoords { r, angle, z } + } + + #[inline] + /// Calculate tangent vector between two points on the side, given radius + fn log(&self, r : f64, other : &SidePoint) -> Loc<f64, 2> { + let SidePoint{ z : z1, angle : angle1 } = *self; + let SidePoint{ z : z2, angle : angle2 } = *other; + let φ = anglediff(angle1, angle2); + // TODO: is this correct? + [r*φ, z2-z1].into() + } + + #[inline] + /// Calculate partial exponential map under boundary + /// Returns a point on the next face, as well as a remaining tangent on + /// the side of the cylinder, if `t` wasn't fully used. + fn partial_exp(&self, r : f64, (a, b) : (f64, f64), t : &Tangent) + -> (SidePoint, Option<Tangent>) + { + assert!(a <= self.z && self.z <= b); + let Loc([_, h]) = *t; + let s = if h > 0.0 { + ((b - self.z)/h).min(1.0) + } else if h < 0.0 { + ((a - self.z)/h).min(1.0) + } else { + 1.0 + }; + let d = t * s; + let p = self.unflatten(r, d); + if s < 1.0 { + (p, Some(t - d)) + } else { + (p, None) + } + } + + #[inline] + /// Unflattens another point in the local coordinate system of self + fn unflatten(&self, r : f64, Loc([v, h]) : Loc<f64, 2>) -> Self { + SidePoint{ z : self.z + h, angle : normalise_angle(self.angle + v / r) } + } + +} + +/// Point on a [`Cylinder`] +#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] +pub enum Point { + Top(CapPoint), + Bottom(CapPoint), + Side(SidePoint), +} + +/// Face on a [`Cylinder`] +#[derive(Copy, Clone, Debug, Eq, PartialEq, Serialize_repr, Deserialize_repr)] +#[repr(u8)] +pub enum Face { + Top, + Bottom, + Side, +} + +#[derive(Clone, Debug, PartialEq)] +pub struct OnCylinder<'a> { + cylinder : &'a Cylinder, + point : Point, +} + + +/// Cylinder configuration +#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] +pub struct CylinderConfig { + pub newton_iters : usize, +} + +impl Default for CylinderConfig { + fn default() -> Self { + CylinderConfig { newton_iters : 10 } + } +} + +/// A cylinder +#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)] +pub struct Cylinder { + /// Radius of the cylinder + pub radius : f64, + /// Height of the cylinder + pub height : f64, + /// Configuration for numerical methods + pub config : CylinderConfig +} + + +impl std::fmt::Display for Face { + fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { + use Face::*; + let s = match *self { + Top => "Top", + Bottom => "Bottom", + Side => "Side", + }; + write!(f, "{}", s) + } +} + +impl Point { + fn face(&self) -> Face { + match *self { + Point::Top(..) => Face::Top, + Point::Bottom(_) => Face::Bottom, + Point::Side(_) => Face::Side, + } + } +} + +impl<'a> FacedManifoldPoint for OnCylinder<'a> { + type Face = Face; + /// Returns the face of this point. + fn face(&self) -> Face { + self.point.face() + } +} + +// Tangent vector +type Tangent = Loc<f64, 2>; + +#[inline] +fn best_tangent<I>(tangents : I) -> (Tangent, f64) +where I : IntoIterator<Item = Tangent> { + tangents.into_iter() + .map(|t| (t, t.norm(L2))) + .reduce(|a@(_, la), b@(_, lb)| if la < lb { a } else { b }) + .unwrap() +} + +/// Swap the elements of a two-tuple +#[inline] +fn swap<A>((a, b) : (A, A)) -> (A, A) { + (b, a) +} + +#[inline] +fn indistinguishable(a : f64, b : f64) -> bool { + a > b - f64::EPSILON && a < b + f64::EPSILON +} + +impl Cylinder { + /// Return the cylindrical coordinates of `point` on this cylinder + fn cyl_coords(&self, point : &Point) -> CylCoords { + match *point { + Point::Top(cap) => { cap.cyl_coords(self.top_z()) }, + Point::Bottom(cap) => { cap.cyl_coords(self.bottom_z()) }, + Point::Side(side) => { side.cyl_coords(self.radius) }, + } + } + + #[inline] + pub fn top_z(&self) -> f64 { + self.height / 2.0 + } + + #[inline] + pub fn bottom_z(&self) -> f64 { + -self.height / 2.0 + } + + /// Find angle where a geodesic from `side` to `(cap, z)` crosses the cap edge. + /// + /// Uses `newton_sym1x1`. + fn side_cap_crossing( + &self, + side : &SidePoint, + cap : &CapPoint, z : f64, // `z` is the z coordinate of cap + ) -> Angle { + let &SidePoint { z : z_1, angle : φ_1 } = side; + let &CapPoint { r : r_2, angle : φ_2 } = cap; + assert_ne!(z, z_1); + let d_1 = z - z_1; + let d2_1 = d_1 * d_1; + let r = self.radius; + let r2 = r * r; + let r2_2 = r_2 * r_2; + let rr_2 = r * r_2; + + let g = |α_1 : f64| { + let ψ = φ_2 - φ_1 - α_1; + let ψ_cos = ψ.cos(); + let ψ_sin = ψ.sin(); + let ψ_sin2 = ψ_sin * ψ_sin; + let ψ_cos2 = ψ_cos * ψ_cos; + let α2_1 = α_1 * α_1; + let c = d2_1 + r2 * α2_1; + let e = r2 + r2_2 - 2.0 * rr_2 * ψ_cos; + let g = r2 * α_1 / c.sqrt() - rr_2 * ψ_sin / e.sqrt(); + let h = r2 * d2_1 / c.powf(3.0/2.0) + + r * r_2 * ((r2 + r2_2) * ψ_cos - rr_2 * (ψ_sin2 - 2.0 * ψ_cos2)) + / e.powf(3.0/2.0); + (h, g) + }; + + let α_1 = newton_sym1x1(g, 0.0, self.config.newton_iters); + normalise_angle(φ_1 + α_1) + + } + + /// Find angles where the geodesic passing through a cap at height `z` from `side1` to `side2` + /// crosses the cap edge. **Panics if `side2.angle < side1.angle`.** + /// + /// Uses `newton_sym2x2`. + fn side_cap_side_crossing( + &self, + side1 : &SidePoint, + z : f64, + side2 : &SidePoint + ) -> (Angle, Angle) { + let &SidePoint { z : z_1, angle : φ_1 } = side1; + let &SidePoint { z : z_2, angle : φ_2 } = side2; + assert!(φ_2 >= φ_1); + assert_ne!(z_1, z); + assert_ne!(z_2, z); + let r = self.radius; + let r2 = r * r; + let d_1 = z - z_1; + let d_2 = z - z_2; + let d2_1 = d_1 * d_1; + let d2_2 = d_2 * d_2; + let g = |α_1 : f64, α_2 : f64| { + let α2_1 = α_1 * α_1; + let α2_2 = α_2 * α_2; + let ψ = (α_1 + α_2 + φ_1 - φ_2) / 2.0; + let ψ_sin = ψ.sin(); + let ψ_cos = ψ.cos(); + let c_1 = d2_1 + r2 * α2_1; + let c_2 = d2_2 + r2 * α2_2; + let g_1 = r2 * α_1 / c_1.sqrt() - r * ψ_cos; + let g_2 = r2 * α_2 / c_2.sqrt() - r * ψ_cos; + let h_12 = (r / 2.0) * ψ_sin; + let h_11 = r2 * d2_1 / c_1.powf(3.0 / 2.0) + h_12; + let h_22 = r2 * d2_2 / c_2.powf(3.0 / 2.0) + h_12; + ([h_11, h_12, h_22], [g_1, g_2]) + }; + + let [α_1, α_2] = newton_sym2x2(g, [0.0, 0.0], self.config.newton_iters); + (normalise_angle(φ_1 + α_1), normalise_angle(φ_2 + α_2)) + + } + + /// Find angles where the geodesic passing through the side from `cap1` at height `z_1` + /// to `cap2` at height `z_2` crosses the cap edges. + /// **Panics if `cap2.angle < cap1.angle`.** + /// + /// Uses `newton_sym2x2`. + fn cap_side_cap_crossing( + &self, + cap1 : &CapPoint, z_1 : f64, + cap2 : &CapPoint, z_2 : f64, + init_by_cap2 : bool + ) -> (Angle, Angle) { + let r = self.radius; + let &CapPoint { r : r_1, angle : φ_1 } = cap1; + let &CapPoint { r : r_2, angle : φ_2 } = cap2; + assert!(φ_2 >= φ_1); + assert_ne!(r_1, r); + assert_ne!(r_2, r); + assert_ne!(z_2, z_1); + if r_1 == 0.0 && r_2 == 0.0 { + // Singular case: both points are in the middle of the caps. + return (φ_1, φ_1) + } + let r2 = r * r; + let d = (z_2 - z_1).abs(); + let d2 = d * d; + let r2_1 = r_1 * r_1; + let r2_2 = r_2 * r_2; + let rr_1 = r * r_1; + let rr_2 = r * r_2; + let f = |α_1 : f64, α_2 : f64| { + let cos_α1 = α_1.cos(); + let sin_α1 = α_1.sin(); + let cos_α2 = α_2.cos(); + let sin_α2 = α_2.sin(); + //let cos2_α1 = cos_α1 * cos_α1; + let sin2_α1 = sin_α1 * sin_α1; + //let cos2_α2 = cos_α2 * cos_α2; + let sin2_α2 = sin_α2 * sin_α2; + let ψ = φ_2 - φ_1 - α_1 - α_2; + let ψ2 = ψ * ψ; + let ψ2r2 = ψ2 * r2; + //let r4 = r2 * r2; + let b = d2 + ψ2r2; + let c = r2 * ψ / b.sqrt(); + let e_1 = r2 + r2_1 - 2.0 * rr_1 * cos_α1; + let e_2 = r2 + r2_2 - 2.0 * rr_2 * cos_α2; + let g_1 = rr_1 * sin_α1 / e_1.sqrt() - c; + let g_2 = rr_2 * sin_α2 / e_2.sqrt() - c; + let h_12 = r2 * (1.0 - ψ2r2 / b) / b.sqrt(); + // let h_11 = rr_1 * ( (r2 + r2_1) * cos_α1 - rr_1 * ( sin2_α1 + 2.0 * cos2_α1) ) + // / e_1.powf(3.0/2.0) + h_12; + // let h_22 = rr_2 * ( (r2 + r2_2) * cos_α2 - rr_2 * ( sin2_α2 + 2.0 * cos2_α2) ) + // / e_2.powf(3.0/2.0) + h_12; + // let h_11 = rr_1 * cos_α1 / e_1.sqrt() - rr_1*rr_1 * sin2_α1 / e_1.powf(3.0/2.0) + h_12; + // let h_22 = rr_2 * cos_α2 / e_2.sqrt() - rr_2*rr_2 * sin2_α2 / e_2.powf(3.0/2.0) + h_12; + let h_11 = rr_1 * (cos_α1 - rr_1 * sin2_α1 / e_1) / e_1.sqrt() + h_12; + let h_22 = rr_2 * (cos_α2 - rr_2 * sin2_α2 / e_2) / e_2.sqrt() + h_12; + ([h_11, h_12, h_22], [g_1, g_2]) + }; + + let α_init = if init_by_cap2 { + [φ_2 - φ_1, 0.0] + } else { + [0.0, φ_2 - φ_1] + }; + let [α_1, α_2] = newton_sym2x2(f, α_init, self.config.newton_iters); + (normalise_angle(φ_1 + α_1), normalise_angle(φ_2 - α_2)) + } + + fn cap_side_log( + &self, + cap : &CapPoint, (z, top) : (f64, bool), + side : &SidePoint + ) -> Tangent { + let r = self.radius; + if indistinguishable(side.z, z) { + // Degenerate case + let capedge = CapPoint{ angle : side.angle, r }; + cap.log(&capedge) + } else if indistinguishable(r, cap.r) + && anglediff(side.angle, cap.angle).abs() < f64::PI/2.0 { + // Degenerate case + let sideedge = SidePoint{ angle : cap.angle, z}; + cap.tangent_from_side(top, sideedge.log(r, side)) + } else { + let φ = self.side_cap_crossing(side, cap, z); + let capedge = CapPoint{ angle : φ, r }; + let sideedge = SidePoint{ angle : φ, z }; + let t1 = cap.log(&capedge); + let t2 = sideedge.log(r, side); + // Either option should give the same result, but the first one avoids division. + t1 + capedge.tangent_from_side(top, t2) + // let n = t1.norm(L2); + // (t1/n)*(n + t2.norm(L2)) + } + } + + fn side_cap_log( + &self, + side : &SidePoint, + cap : &CapPoint, (z, top) : (f64, bool), + ) -> Tangent { + let r = self.radius; + if indistinguishable(side.z, z) { + // Degenerate case + let capedge = CapPoint{ angle : side.angle, r }; + capedge.tangent_to_side(top, capedge.log(cap)) + } else if indistinguishable(r, cap.r) + && anglediff(side.angle, cap.angle).abs() < f64::PI/2.0 { + // Degenerate case + side.log(r, &SidePoint{ z, angle : cap.angle }) + } else { + let φ = self.side_cap_crossing(side, cap, z); + let capedge = CapPoint{ angle : φ, r }; + let sideedge = SidePoint{ angle : φ, z }; + let t1 = side.log(r, &sideedge); + let t2 = capedge.log(cap); + // Either option should give the same result, but the first one avoids division. + t1 + capedge.tangent_to_side(top, t2) + // let n = t1.norm(L2); + // (t1/n)*(n + t2.norm(L2)) + } + } + + fn side_cap_side_log( + &self, + side1 : &SidePoint, + (z, top) : (f64, bool), + side2 : &SidePoint + ) -> Tangent { + let r = self.radius; + if indistinguishable(side1.z, z) { + // Degenerate case + let capedge1 = CapPoint{ angle : side1.angle, r }; + capedge1.tangent_to_side(top, self.cap_side_log(&capedge1, (z, top), side2)) + } else if indistinguishable(side2.z, z) { + // Degenerate case + let capedge2 = CapPoint{ angle : side2.angle, r }; + self.side_cap_log(side1, &capedge2, (z, top)) + } else { + let (φ1, φ2) = if side2.angle >= side1.angle { + self.side_cap_side_crossing(side1, z, side2) + } else { + swap(self.side_cap_side_crossing(side2, z, side1)) + }; + let capedge1 = CapPoint{ angle : φ1, r }; + let sideedge1 = SidePoint{ angle : φ1, z }; + let capedge2 = CapPoint{ angle : φ2, r }; + let sideedge2 = SidePoint{ angle : φ2, z }; + let t1 = side1.log(r, &sideedge1); + let t2 = capedge1.log(&capedge2); + let t3 = sideedge2.log(r, &side2); + // Any option should give the same result, but the first one avoids division. + // t1 + capedge1.tangent_to_side(top, t2 + capedge2.tangent_from_side(top, t3)) + // + // let n = t2.norm(L2); + // t1 + capedge1.tangent_to_side(top, (t2/n)*(n + t3.norm(L2))) + // + let n = t1.norm(L2); + (t1/n)*(n + t2.norm(L2) + t3.norm(L2)) + // + // let n = t1.norm(L2); + // let t23 = t2 + capedge2.tangent_from_side(top, t3); + // (t1/n)*(n + t23.norm(L2)) + } + } + + fn cap_side_cap_log( + &self, + cap1 : &CapPoint, (z1, top1) : (f64, bool), + cap2 : &CapPoint, (z2, top2) : (f64, bool), + init_by_cap2 : bool, + ) -> Tangent { + let r = self.radius; + if indistinguishable(cap1.r, r) { + // Degenerate case + let sideedge1 = SidePoint{ angle : cap1.angle, z : z1 }; + cap1.tangent_from_side(top1, self.side_cap_log(&sideedge1, cap2, (z2, top2))) + } else if indistinguishable(cap2.r, r) { + // Degenerate case + let sideedge2 = SidePoint{ angle : cap2.angle, z : z2 }; + self.cap_side_log(cap1, (z1, top1), &sideedge2) + } else { + let (φ1, φ2) = if cap2.angle >= cap1.angle { + self.cap_side_cap_crossing(cap1, z1, cap2, z2, init_by_cap2) + } else { + swap(self.cap_side_cap_crossing(cap2, z2, cap1, z1, !init_by_cap2)) + }; + let sideedge1 = SidePoint{ angle : φ1, z : z1 }; + let capedge1 = CapPoint{ angle : φ1, r }; + let sideedge2 = SidePoint{ angle : φ2, z : z2}; + let capedge2 = CapPoint{ angle : φ2, r }; + let t1 = cap1.log(&capedge1); + let t2 = sideedge1.log(r, &sideedge2); + let t3 = capedge2.log(cap2); + // Either option should give the same result, but the first one avoids division. + t1 + capedge1.tangent_from_side(top1, t2 + capedge2.tangent_to_side(top2, t3)) + //let n = t1.norm(L2); + //(t1/n)*(n + t2.norm(L2) + t3.norm(L2)) + } + } + + /// Calculates both the logarithmic map and distance to another point + fn log_dist(&self, source : &Point, destination : &Point) -> (Tangent, f64) { + use Point::*; + match (source, destination) { + (Top(cap1), Top(cap2)) => { + best_tangent([cap1.log(cap2)]) + }, + (Bottom(cap1), Bottom(cap2)) => { + best_tangent([cap1.log(cap2)]) + }, + (Bottom(cap), Side(side)) => { + best_tangent([self.cap_side_log(cap, (self.bottom_z(), false), side)]) + }, + (Top(cap), Side(side)) => { + best_tangent([self.cap_side_log(cap, (self.top_z(), true), side)]) + }, + (Side(side), Bottom(cap)) => { + best_tangent([self.side_cap_log(side, cap, (self.bottom_z(), false))]) + }, + (Side(side), Top(cap)) => { + best_tangent([self.side_cap_log(side, cap, (self.top_z(), true))]) + }, + (Side(side1), Side(side2)) => { + best_tangent([ + side1.log(self.radius, side2), + self.side_cap_side_log(side1, (self.top_z(), true), side2), + self.side_cap_side_log(side1, (self.bottom_z(), false), side2), + ]) + }, + (Top(cap1), Bottom(cap2)) => { + best_tangent([ + // We try a few possible initialisations for Newton + self.cap_side_cap_log( + cap1, (self.top_z(), true), + cap2, (self.bottom_z(), false), + false + ), + self.cap_side_cap_log( + cap1, (self.top_z(), true), + cap2, (self.bottom_z(), false), + true + ), + ]) + }, + (Bottom(cap1), Top(cap2)) => { + best_tangent([ + // We try a few possible initialisations for Newton + self.cap_side_cap_log( + cap1, (self.bottom_z(), false), + cap2, (self.top_z(), true), + false + ), + self.cap_side_cap_log( + cap1, (self.bottom_z(), false), + cap2, (self.top_z(), true), + true + ), + ]) + }, + } + } + + #[allow(unreachable_code)] + #[allow(unused_variables)] + fn partial_exp(&self, point : Point, t : Tangent) -> (Point, Option<Tangent>) { + match point { + Point::Top(cap) => { + let (cap_new, t_new_basis) = cap.partial_exp(self.radius, &t); + match t_new_basis { + None => (Point::Top(cap_new), None), + Some(t_new) => { + let side_new = SidePoint{ angle : cap_new.angle, z : self.top_z() }; + (Point::Side(side_new), Some(cap_new.tangent_to_side(true, t_new))) + } + } + }, + Point::Bottom(cap) => { + let (cap_new, t_new_basis) = cap.partial_exp(self.radius, &t); + match t_new_basis { + None => (Point::Bottom(cap_new), None), + Some(t_new) => { + let side_new = SidePoint{ angle : cap_new.angle, z : self.bottom_z() }; + (Point::Side(side_new), Some(cap_new.tangent_to_side(false, t_new))) + } + } + }, + Point::Side(side) => { + let lims = (self.bottom_z(), self.top_z()); + let (side_new, t_new_basis) = side.partial_exp(self.radius, lims, &t); + match t_new_basis { + None => (Point::Side(side_new), None), + Some(t_new) => { + if side_new.z >= self.top_z() - f64::EPSILON { + let cap_new = CapPoint { angle : side_new.angle, r : self.radius }; + (Point::Top(cap_new), Some(cap_new.tangent_from_side(true, t_new))) + } else { + let cap_new = CapPoint { angle : side_new.angle, r : self.radius }; + (Point::Bottom(cap_new), Some(cap_new.tangent_from_side(false, t_new))) + } + } + } + } + } + } + + fn exp(&self, point : &Point, tangent : &Tangent) -> Point { + let mut p = *point; + let mut t = *tangent; + loop { + (p, t) = match self.partial_exp(p, t) { + (p, None) => break p, + (p, Some(t)) => (p, t), + }; + } + } + + /// Check that `point` has valid coordinates, and normalise angles + pub fn normalise(&self, point : Point) -> Option<Point> { + match point { + Point::Side(side) => { + let a = self.bottom_z(); + let b = self.top_z(); + (a <= side.z && side.z <= b).then(|| { + Point::Side(SidePoint{ angle : normalise_angle(side.angle), .. side }) + }) + }, + Point::Bottom(cap) => { + (cap.r <= self.radius).then(|| { + Point::Bottom(CapPoint{ angle : normalise_angle(cap.angle), .. cap }) + }) + }, + Point::Top(cap) => { + (cap.r <= self.radius).then(|| { + Point::Top(CapPoint{ angle : normalise_angle(cap.angle), .. cap }) + }) + }, + } + } + + /// Convert `p` into a a point associated with the cylinder. + /// + /// May panic if the coordinates are invalid. + pub fn point_on(&self, point : Point) -> OnCylinder<'_> { + match self.normalise(point) { + None => panic!("{point:?} not on cylinder {self:?}"), + Some(point) => OnCylinder { cylinder : self, point } + } + } + + /// Convert `p` into a a point on side associated with the cylinder. + /// + /// May panic if the coordinates are invalid. + pub fn point_on_side(&self, side : SidePoint) -> OnCylinder<'_> { + self.point_on(Point::Side(side)) + } + + /// Convert `p` into a a point on top associated with the cylinder. + /// + /// May panic if the coordinates are invalid. + pub fn point_on_top(&self, cap : CapPoint) -> OnCylinder<'_> { + self.point_on(Point::Top(cap)) + } + + /// Convert `p` into a a point on bottom associated with the cylinder. + /// + /// May panic if the coordinates are invalid. + pub fn point_on_bottom(&self, cap : CapPoint) -> OnCylinder<'_> { + self.point_on(Point::Bottom(cap)) + } + + /// Convert `p` into a a point on side associated with the cylinder. + /// + /// May panic if the coordinates are invalid. + pub fn on_side(&self, angle : Angle, z : f64) -> OnCylinder<'_> { + self.point_on_side(SidePoint{ angle, z }) + } + + /// Convert `p` into a a point on top associated with the cylinder. + /// + /// May panic if the coordinates are invalid. + pub fn on_top(&self, angle : Angle, r : f64) -> OnCylinder<'_> { + self.point_on_top(CapPoint{ angle, r }) + } + + /// Convert `p` into a a point on bottom associated with the cylinder. + /// + /// May panic if the coordinates are invalid. + pub fn on_bottom(&self, angle : Angle, r : f64) -> OnCylinder<'_> { + self.point_on_bottom(CapPoint{ angle, r }) + } +} + +impl<'a> OnCylinder<'a> { + /// Return the cylindrical coordinates of this point + pub fn cyl_coords(&self) -> CylCoords { + self.cylinder.cyl_coords(&self.point) + } +} + +impl<'a> EmbeddedManifoldPoint for OnCylinder<'a> { + type EmbeddedCoords = Loc<f64, 3>; + + /// Get embedded 3D coordinates + fn embedded_coords(&self) -> Loc<f64, 3> { + self.cyl_coords().to_cartesian() + } +} + +impl<'a> ManifoldPoint for OnCylinder<'a> { + type Tangent = Tangent; + + fn exp(self, tangent : &Self::Tangent) -> Self { + let cylinder = self.cylinder; + let point = cylinder.exp(&self.point, tangent); + OnCylinder { cylinder, point } + } + + fn log(&self, other : &Self) -> Self::Tangent { + assert!(self.cylinder == other.cylinder); + self.cylinder.log_dist(&self.point, &other.point).0 + } + + fn dist_to(&self, other : &Self) -> f64 { + assert!(self.cylinder == other.cylinder); + self.cylinder.log_dist(&self.point, &other.point).1 + } + + fn tangent_origin(&self) -> Self::Tangent { + Loc([0.0, 0.0]) + } +} + +#[cfg(test)] +mod tests { + use super::*; + + static CYL : Cylinder = Cylinder { + radius : 1.0, + height : 1.0, + config : CylinderConfig { newton_iters : 20 }, + }; + + fn check_distance(distance : f64, expected : f64) { + let tol = 1e-10; + assert!( + (distance-expected).abs() < tol, + "distance = {distance}, expected = {expected}" + ); + } + + // fn check_distance_less(distance : f64, expected : f64) { + // let tol = 1e-10; + // assert!( + // distance < expected + tol, + // "distance = {distance}, expected = {expected}" + // ); + // } + + #[test] + fn intra_cap_log_dist() { + let π = f64::PI; + let p1 = CYL.on_top(0.0, 0.5); + let p2 = CYL.on_top(π, 0.5); + let p3 = CYL.on_top(π/2.0, 0.5); + + check_distance(p1.dist_to(&p2), 1.0); + check_distance(p2.dist_to(&p3), 0.5_f64.sqrt()); + check_distance(p3.dist_to(&p1), 0.5_f64.sqrt()); + } + + #[test] + fn intra_side_log_dist() { + let π = f64::PI; + let p1 = CYL.on_side(0.0, 0.0); + let p2 = CYL.on_side(0.0, 0.4); + let p3 = CYL.on_side(π/2.0, 0.0); + + check_distance(p1.dist_to(&p2), 0.4); + check_distance(p1.dist_to(&p3), π/2.0*CYL.radius); + } + + #[test] + fn intra_side_over_cap_log_dist() { + let π = f64::PI; + let off = 0.05; + let z = CYL.top_z() - off; + let p1 = CYL.on_side(0.0, z); + let p2 = CYL.on_side(π, z); + + check_distance(p1.dist_to(&p2), 2.0 * (CYL.radius + off)); + } + + #[test] + fn top_bottom_log_dist() { + let π = f64::PI; + let p1 = CYL.on_top(0.0, 0.0); + let p2 = CYL.on_bottom(0.0, 0.0); + + check_distance(p1.dist_to(&p2), 2.0 * CYL.radius + CYL.height); + + let p1 = CYL.on_top(0.0, CYL.radius / 2.0); + let p2 = CYL.on_bottom(0.0, CYL.radius / 2.0); + let p3 = CYL.on_bottom(π, CYL.radius / 2.0); + + check_distance(p1.dist_to(&p2), CYL.radius + CYL.height); + check_distance(p1.dist_to(&p3), 2.0 * CYL.radius + CYL.height); + } + + #[test] + fn top_side_log_dist() { + let p1 = CYL.on_top(0.0, 0.0); + let p2 = CYL.on_side(0.0, 0.0); + + check_distance(p1.dist_to(&p2), CYL.radius + CYL.height / 2.0); + } +}