--- a/src/fb.rs Mon Jan 06 11:32:57 2025 -0500 +++ b/src/fb.rs Thu Jan 23 23:35:28 2025 +0100 @@ -80,40 +80,18 @@ use numeric_literals::replace_float_literals; use serde::{Serialize, Deserialize}; use colored::Colorize; -use nalgebra::DVector; -use alg_tools::iterate::{ - AlgIteratorFactory, - AlgIteratorIteration, - AlgIterator, -}; +use alg_tools::iterate::AlgIteratorFactory; use alg_tools::euclidean::Euclidean; use alg_tools::linops::{Mapping, GEMV}; -use alg_tools::sets::Cube; -use alg_tools::loc::Loc; -use alg_tools::bisection_tree::{ - BTFN, - PreBTFN, - Bounds, - BTNodeLookup, - BTNode, - BTSearch, - P2Minimise, - SupportGenerator, - LocalAnalysis, - BothGenerators, -}; use alg_tools::mapping::RealMapping; use alg_tools::nalgebra_support::ToNalgebraRealField; use alg_tools::instance::Instance; -use alg_tools::norms::Linfinity; use crate::types::*; use crate::measures::{ DiscreteMeasure, RNDM, - DeltaMeasure, - Radon, }; use crate::measures::merging::{ SpikeMergingMethod, @@ -121,14 +99,8 @@ }; use crate::forward_model::{ ForwardModel, - AdjointProductBoundedBy + AdjointProductBoundedBy, }; -use crate::seminorms::DiscreteMeasureOp; -use crate::subproblem::{ - InnerSettings, - InnerMethod, -}; -use crate::tolerance::Tolerance; use crate::plot::{ SeqPlotter, Plotting, @@ -140,6 +112,10 @@ L2Squared, DataTerm, }; +pub use crate::prox_penalty::{ + FBGenericConfig, + ProxPenalty +}; /// Settings for [`pointsource_fb_reg`]. #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] @@ -151,51 +127,6 @@ pub generic : FBGenericConfig<F>, } -/// Settings for the solution of the stepwise optimality condition. -#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] -#[serde(default)] -pub struct FBGenericConfig<F : Float> { - /// Tolerance for point insertion. - pub tolerance : Tolerance<F>, - - /// Stop looking for predual maximum (where to isert a new point) below - /// `tolerance` multiplied by this factor. - /// - /// Not used by [`super::radon_fb`]. - pub insertion_cutoff_factor : F, - - /// Settings for branch and bound refinement when looking for predual maxima - pub refinement : RefinementSettings<F>, - - /// Maximum insertions within each outer iteration - /// - /// Not used by [`super::radon_fb`]. - pub max_insertions : usize, - - /// Pair `(n, m)` for maximum insertions `m` on first `n` iterations. - /// - /// Not used by [`super::radon_fb`]. - pub bootstrap_insertions : Option<(usize, usize)>, - - /// Inner method settings - pub inner : InnerSettings<F>, - - /// Spike merging method - pub merging : SpikeMergingMethod<F>, - - /// Tolerance multiplier for merges - pub merge_tolerance_mult : F, - - /// Spike merging method after the last step - pub final_merging : SpikeMergingMethod<F>, - - /// Iterations between merging heuristic tries - pub merge_every : usize, - - // /// Save $μ$ for postprocessing optimisation - // pub postprocessing : bool -} - #[replace_float_literals(F::cast_from(literal))] impl<F : Float> Default for FBConfig<F> { fn default() -> Self { @@ -206,155 +137,6 @@ } } -#[replace_float_literals(F::cast_from(literal))] -impl<F : Float> Default for FBGenericConfig<F> { - fn default() -> Self { - FBGenericConfig { - tolerance : Default::default(), - insertion_cutoff_factor : 1.0, - refinement : Default::default(), - max_insertions : 100, - //bootstrap_insertions : None, - bootstrap_insertions : Some((10, 1)), - inner : InnerSettings { - method : InnerMethod::Default, - .. Default::default() - }, - merging : SpikeMergingMethod::None, - //merging : Default::default(), - final_merging : Default::default(), - merge_every : 10, - merge_tolerance_mult : 2.0, - // postprocessing : false, - } - } -} - -impl<F : Float> FBGenericConfig<F> { - /// Check if merging should be attempted this iteration - pub fn merge_now<I : AlgIterator>(&self, state : &AlgIteratorIteration<I>) -> bool { - state.iteration() % self.merge_every == 0 - } -} - -/// TODO: document. -/// `μ_base + ν_delta` is the base point, where `μ` and `μ_base` are assumed to have the same spike -/// locations, while `ν_delta` may have different locations. -#[replace_float_literals(F::cast_from(literal))] -pub(crate) fn insert_and_reweigh< - 'a, F, GA, 𝒟, BTA, G𝒟, S, K, Reg, I, const N : usize ->( - μ : &mut RNDM<F, N>, - τv : &BTFN<F, GA, BTA, N>, - μ_base : &RNDM<F, N>, - ν_delta: Option<&RNDM<F, N>>, - op𝒟 : &'a 𝒟, - op𝒟norm : F, - τ : F, - ε : F, - config : &FBGenericConfig<F>, - reg : &Reg, - state : &AlgIteratorIteration<I>, - stats : &mut IterInfo<F, N>, -) -> (BTFN<F, BothGenerators<GA, G𝒟>, BTA, N>, bool) -where F : Float + ToNalgebraRealField, - GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, - BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, - G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, - 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, - 𝒟::Codomain : RealMapping<F, N>, - S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, - K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, - BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, - Reg : RegTerm<F, N>, - I : AlgIterator { - - // Maximum insertion count and measure difference calculation depend on insertion style. - let (max_insertions, warn_insertions) = match (state.iteration(), config.bootstrap_insertions) { - (i, Some((l, k))) if i <= l => (k, false), - _ => (config.max_insertions, !state.is_quiet()), - }; - - let ω0 = match ν_delta { - None => op𝒟.apply(μ_base), - Some(ν) => op𝒟.apply(μ_base + ν), - }; - - // Add points to support until within error tolerance or maximum insertion count reached. - let mut count = 0; - let (within_tolerances, d) = 'insertion: loop { - if μ.len() > 0 { - // Form finite-dimensional subproblem. The subproblem references to the original μ^k - // from the beginning of the iteration are all contained in the immutable c and g. - // TODO: observe negation of -τv after switch from minus_τv: finite-dimensional - // problems have not yet been updated to sign change. - let à = op𝒟.findim_matrix(μ.iter_locations()); - let g̃ = DVector::from_iterator(μ.len(), - μ.iter_locations() - .map(|ζ| ω0.apply(ζ) - τv.apply(ζ)) - .map(F::to_nalgebra_mixed)); - let mut x = μ.masses_dvector(); - - // The gradient of the forward component of the inner objective is C^*𝒟Cx - g̃. - // We have |C^*𝒟Cx|_2 = sup_{|z|_2 ≤ 1} ⟨z, C^*𝒟Cx⟩ = sup_{|z|_2 ≤ 1} ⟨Cz|𝒟Cx⟩ - // ≤ sup_{|z|_2 ≤ 1} |Cz|_ℳ |𝒟Cx|_∞ ≤ sup_{|z|_2 ≤ 1} |Cz|_ℳ |𝒟| |Cx|_ℳ - // ≤ sup_{|z|_2 ≤ 1} |z|_1 |𝒟| |x|_1 ≤ sup_{|z|_2 ≤ 1} n |z|_2 |𝒟| |x|_2 - // = n |𝒟| |x|_2, where n is the number of points. Therefore - let Ã_normest = op𝒟norm * F::cast_from(μ.len()); - - // Solve finite-dimensional subproblem. - stats.inner_iters += reg.solve_findim(&Ã, &g̃, τ, &mut x, Ã_normest, ε, config); - - // Update masses of μ based on solution of finite-dimensional subproblem. - μ.set_masses_dvector(&x); - } - - // Form d = τv + 𝒟μ - ω0 = τv + 𝒟(μ - μ^k) for checking the proximate optimality - // conditions in the predual space, and finding new points for insertion, if necessary. - let mut d = τv + match ν_delta { - None => op𝒟.preapply(μ.sub_matching(μ_base)), - Some(ν) => op𝒟.preapply(μ.sub_matching(μ_base) - ν) - }; - - // If no merging heuristic is used, let's be more conservative about spike insertion, - // and skip it after first round. If merging is done, being more greedy about spike - // insertion also seems to improve performance. - let skip_by_rough_check = if let SpikeMergingMethod::None = config.merging { - false - } else { - count > 0 - }; - - // Find a spike to insert, if needed - let (ξ, _v_ξ, in_bounds) = match reg.find_tolerance_violation( - &mut d, τ, ε, skip_by_rough_check, config - ) { - None => break 'insertion (true, d), - Some(res) => res, - }; - - // Break if maximum insertion count reached - if count >= max_insertions { - break 'insertion (in_bounds, d) - } - - // No point in optimising the weight here; the finite-dimensional algorithm is fast. - *μ += DeltaMeasure { x : ξ, α : 0.0 }; - count += 1; - stats.inserted += 1; - }; - - if !within_tolerances && warn_insertions { - // Complain (but continue) if we failed to get within tolerances - // by inserting more points. - let err = format!("Maximum insertions reached without achieving \ - subproblem solution tolerance"); - println!("{}", err.red()); - } - - (d, within_tolerances) -} - pub(crate) fn prune_with_stats<F : Float, const N : usize>( μ : &mut RNDM<F, N>, ) -> usize { @@ -409,38 +191,32 @@ /// Returns the final iterate. #[replace_float_literals(F::cast_from(literal))] pub fn pointsource_fb_reg< - 'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, Reg, const N : usize + F, I, A, Reg, P, const N : usize >( - opA : &'a A, + opA : &A, b : &A::Observable, reg : Reg, - op𝒟 : &'a 𝒟, + prox_penalty : &P, fbconfig : &FBConfig<F>, iterator : I, mut plotter : SeqPlotter<F, N>, ) -> RNDM<F, N> -where F : Float + ToNalgebraRealField, - I : AlgIteratorFactory<IterInfo<F, N>>, - for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, - GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, - A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> - + AdjointProductBoundedBy<RNDM<F, N>, 𝒟, FloatType=F>, - BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, - G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, - 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, - 𝒟::Codomain : RealMapping<F, N>, - S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, - K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, - BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, - Cube<F, N>: P2Minimise<Loc<F, N>, F>, - PlotLookup : Plotting<N>, - RNDM<F, N> : SpikeMerging<F>, - Reg : RegTerm<F, N> { +where + F : Float + ToNalgebraRealField, + I : AlgIteratorFactory<IterInfo<F, N>>, + for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, + A : ForwardModel<RNDM<F, N>, F> + + AdjointProductBoundedBy<RNDM<F, N>, P, FloatType=F>, + A::PreadjointCodomain : RealMapping<F, N>, + PlotLookup : Plotting<N>, + RNDM<F, N> : SpikeMerging<F>, + Reg : RegTerm<F, N>, + P : ProxPenalty<F, A::PreadjointCodomain, Reg, N>, +{ // Set up parameters let config = &fbconfig.generic; - let op𝒟norm = op𝒟.opnorm_bound(Radon, Linfinity); - let τ = fbconfig.τ0/opA.adjoint_product_bound(&op𝒟).unwrap(); + let τ = fbconfig.τ0/opA.adjoint_product_bound(prox_penalty).unwrap(); // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled // by τ compared to the conditional gradient approach. let tolerance = config.tolerance * τ * reg.tolerance_scaling(); @@ -465,26 +241,23 @@ // Run the algorithm for state in iterator.iter_init(|| full_stats(&residual, &μ, ε, stats.clone())) { // Calculate smooth part of surrogate model. - let τv = opA.preadjoint().apply(residual * τ); + let mut τv = opA.preadjoint().apply(residual * τ); // Save current base point let μ_base = μ.clone(); // Insert and reweigh - let (d, _within_tolerances) = insert_and_reweigh( - &mut μ, &τv, &μ_base, None, - op𝒟, op𝒟norm, + let (maybe_d, _within_tolerances) = prox_penalty.insert_and_reweigh( + &mut μ, &mut τv, &μ_base, None, τ, ε, config, ®, &state, &mut stats ); // Prune and possibly merge spikes if config.merge_now(&state) { - stats.merged += μ.merge_spikes(config.merging, |μ_candidate| { - let mut d = &τv + op𝒟.preapply(μ_candidate.sub_matching(&μ_base)); - reg.verify_merge_candidate(&mut d, μ_candidate, τ, ε, &config) - }); + stats.merged += prox_penalty.merge_spikes(&mut μ, &mut τv, &μ_base, τ, ε, config, ®); } + stats.pruned += prune_with_stats(&mut μ); // Update residual @@ -495,7 +268,7 @@ // Give statistics if needed state.if_verbose(|| { - plotter.plot_spikes(iter, Some(&d), Some(&τv), &μ); + plotter.plot_spikes(iter, maybe_d.as_ref(), Some(&τv), &μ); full_stats(&residual, &μ, ε, std::mem::replace(&mut stats, IterInfo::new())) }); @@ -526,38 +299,32 @@ /// Returns the final iterate. #[replace_float_literals(F::cast_from(literal))] pub fn pointsource_fista_reg< - 'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, Reg, const N : usize + F, I, A, Reg, P, const N : usize >( - opA : &'a A, + opA : &A, b : &A::Observable, reg : Reg, - op𝒟 : &'a 𝒟, + prox_penalty : &P, fbconfig : &FBConfig<F>, iterator : I, mut plotter : SeqPlotter<F, N>, ) -> RNDM<F, N> -where F : Float + ToNalgebraRealField, - I : AlgIteratorFactory<IterInfo<F, N>>, - for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, - GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, - A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> - + AdjointProductBoundedBy<RNDM<F, N>, 𝒟, FloatType=F>, - BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, - G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, - 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, - 𝒟::Codomain : RealMapping<F, N>, - S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, - K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, - BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, - Cube<F, N>: P2Minimise<Loc<F, N>, F>, - PlotLookup : Plotting<N>, - RNDM<F, N> : SpikeMerging<F>, - Reg : RegTerm<F, N> { +where + F : Float + ToNalgebraRealField, + I : AlgIteratorFactory<IterInfo<F, N>>, + for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, + A : ForwardModel<RNDM<F, N>, F> + + AdjointProductBoundedBy<RNDM<F, N>, P, FloatType=F>, + A::PreadjointCodomain : RealMapping<F, N>, + PlotLookup : Plotting<N>, + RNDM<F, N> : SpikeMerging<F>, + Reg : RegTerm<F, N>, + P : ProxPenalty<F, A::PreadjointCodomain, Reg, N>, +{ // Set up parameters let config = &fbconfig.generic; - let op𝒟norm = op𝒟.opnorm_bound(Radon, Linfinity); - let τ = fbconfig.τ0/opA.adjoint_product_bound(&op𝒟).unwrap(); + let τ = fbconfig.τ0/opA.adjoint_product_bound(prox_penalty).unwrap(); let mut λ = 1.0; // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled // by τ compared to the conditional gradient approach. @@ -583,15 +350,14 @@ // Run the algorithm for state in iterator.iter_init(|| full_stats(&μ, ε, stats.clone())) { // Calculate smooth part of surrogate model. - let τv = opA.preadjoint().apply(residual * τ); + let mut τv = opA.preadjoint().apply(residual * τ); // Save current base point let μ_base = μ.clone(); // Insert new spikes and reweigh - let (d, _within_tolerances) = insert_and_reweigh( - &mut μ, &τv, &μ_base, None, - op𝒟, op𝒟norm, + let (maybe_d, _within_tolerances) = prox_penalty.insert_and_reweigh( + &mut μ, &mut τv, &μ_base, None, τ, ε, config, ®, &state, &mut stats ); @@ -632,7 +398,7 @@ // Give statistics if needed state.if_verbose(|| { - plotter.plot_spikes(iter, Some(&d), Some(&τv), &μ_prev); + plotter.plot_spikes(iter, maybe_d.as_ref(), Some(&τv), &μ_prev); full_stats(&μ_prev, ε, std::mem::replace(&mut stats, IterInfo::new())) });