--- a/src/fb.rs Thu Aug 29 00:00:00 2024 -0500 +++ b/src/fb.rs Tue Dec 31 09:25:45 2024 -0500 @@ -6,10 +6,7 @@ * Valkonen T. - _Proximal methods for point source localisation_, [arXiv:2212.02991](https://arxiv.org/abs/2212.02991). -The main routine is [`pointsource_fb_reg`]. It is based on [`generic_pointsource_fb_reg`], which is -also used by our [primal-dual proximal splitting][crate::pdps] implementation. - -FISTA-type inertia can also be enabled through [`FBConfig::meta`]. +The main routine is [`pointsource_fb_reg`]. ## Problem @@ -76,7 +73,7 @@ $$ </p> -We solve this with either SSN or FB via [`quadratic_nonneg`] as determined by +We solve this with either SSN or FB as determined by [`InnerSettings`] in [`FBGenericConfig::inner`]. */ @@ -87,10 +84,11 @@ use alg_tools::iterate::{ AlgIteratorFactory, - AlgIteratorState, + AlgIteratorIteration, + AlgIterator, }; use alg_tools::euclidean::Euclidean; -use alg_tools::linops::{Apply, GEMV}; +use alg_tools::linops::{Mapping, GEMV}; use alg_tools::sets::Cube; use alg_tools::loc::Loc; use alg_tools::bisection_tree::{ @@ -107,17 +105,24 @@ }; use alg_tools::mapping::RealMapping; use alg_tools::nalgebra_support::ToNalgebraRealField; +use alg_tools::instance::Instance; +use alg_tools::norms::Linfinity; use crate::types::*; use crate::measures::{ DiscreteMeasure, + RNDM, DeltaMeasure, + Radon, }; use crate::measures::merging::{ SpikeMergingMethod, SpikeMerging, }; -use crate::forward_model::ForwardModel; +use crate::forward_model::{ + ForwardModel, + AdjointProductBoundedBy +}; use crate::seminorms::DiscreteMeasureOp; use crate::subproblem::{ InnerSettings, @@ -146,8 +151,7 @@ pub generic : FBGenericConfig<F>, } -/// Settings for the solution of the stepwise optimality condition in algorithms based on -/// [`generic_pointsource_fb_reg`]. +/// Settings for the solution of the stepwise optimality condition. #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] #[serde(default)] pub struct FBGenericConfig<F : Float> { @@ -188,8 +192,8 @@ /// Iterations between merging heuristic tries pub merge_every : usize, - /// Save $μ$ for postprocessing optimisation - pub postprocessing : bool + // /// Save $μ$ for postprocessing optimisation + // pub postprocessing : bool } #[replace_float_literals(F::cast_from(literal))] @@ -221,29 +225,36 @@ final_merging : Default::default(), merge_every : 10, merge_tolerance_mult : 2.0, - postprocessing : false, + // postprocessing : false, } } } +impl<F : Float> FBGenericConfig<F> { + /// Check if merging should be attempted this iteration + pub fn merge_now<I : AlgIterator>(&self, state : &AlgIteratorIteration<I>) -> bool { + state.iteration() % self.merge_every == 0 + } +} + /// TODO: document. /// `μ_base + ν_delta` is the base point, where `μ` and `μ_base` are assumed to have the same spike /// locations, while `ν_delta` may have different locations. #[replace_float_literals(F::cast_from(literal))] pub(crate) fn insert_and_reweigh< - 'a, F, GA, 𝒟, BTA, G𝒟, S, K, Reg, State, const N : usize + 'a, F, GA, 𝒟, BTA, G𝒟, S, K, Reg, I, const N : usize >( - μ : &mut DiscreteMeasure<Loc<F, N>, F>, - minus_τv : &BTFN<F, GA, BTA, N>, - μ_base : &DiscreteMeasure<Loc<F, N>, F>, - ν_delta: Option<&DiscreteMeasure<Loc<F, N>, F>>, + μ : &mut RNDM<F, N>, + τv : &BTFN<F, GA, BTA, N>, + μ_base : &RNDM<F, N>, + ν_delta: Option<&RNDM<F, N>>, op𝒟 : &'a 𝒟, op𝒟norm : F, τ : F, ε : F, config : &FBGenericConfig<F>, reg : &Reg, - state : &State, + state : &AlgIteratorIteration<I>, stats : &mut IterInfo<F, N>, ) -> (BTFN<F, BothGenerators<GA, G𝒟>, BTA, N>, bool) where F : Float + ToNalgebraRealField, @@ -255,9 +266,8 @@ S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, - DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, Reg : RegTerm<F, N>, - State : AlgIteratorState { + I : AlgIterator { // Maximum insertion count and measure difference calculation depend on insertion style. let (max_insertions, warn_insertions) = match (state.iteration(), config.bootstrap_insertions) { @@ -265,11 +275,10 @@ _ => (config.max_insertions, !state.is_quiet()), }; - // TODO: should avoid a copy of μ_base here. - let ω0 = op𝒟.apply(match ν_delta { - None => μ_base.clone(), - Some(ν_d) => &*μ_base + ν_d, - }); + let ω0 = match ν_delta { + None => op𝒟.apply(μ_base), + Some(ν) => op𝒟.apply(μ_base + ν), + }; // Add points to support until within error tolerance or maximum insertion count reached. let mut count = 0; @@ -277,10 +286,12 @@ if μ.len() > 0 { // Form finite-dimensional subproblem. The subproblem references to the original μ^k // from the beginning of the iteration are all contained in the immutable c and g. + // TODO: observe negation of -τv after switch from minus_τv: finite-dimensional + // problems have not yet been updated to sign change. let à = op𝒟.findim_matrix(μ.iter_locations()); let g̃ = DVector::from_iterator(μ.len(), μ.iter_locations() - .map(|ζ| minus_τv.apply(ζ) + ω0.apply(ζ)) + .map(|ζ| ω0.apply(ζ) - τv.apply(ζ)) .map(F::to_nalgebra_mixed)); let mut x = μ.masses_dvector(); @@ -298,12 +309,12 @@ μ.set_masses_dvector(&x); } - // Form d = ω0 - τv - 𝒟μ = -𝒟(μ - μ^k) - τv for checking the proximate optimality + // Form d = τv + 𝒟μ - ω0 = τv + 𝒟(μ - μ^k) for checking the proximate optimality // conditions in the predual space, and finding new points for insertion, if necessary. - let mut d = minus_τv + op𝒟.preapply(match ν_delta { - None => μ_base.sub_matching(μ), - Some(ν) => μ_base.sub_matching(μ) + ν - }); + let mut d = τv + match ν_delta { + None => op𝒟.preapply(μ.sub_matching(μ_base)), + Some(ν) => op𝒟.preapply(μ.sub_matching(μ_base) - ν) + }; // If no merging heuristic is used, let's be more conservative about spike insertion, // and skip it after first round. If merging is done, being more greedy about spike @@ -330,11 +341,9 @@ // No point in optimising the weight here; the finite-dimensional algorithm is fast. *μ += DeltaMeasure { x : ξ, α : 0.0 }; count += 1; + stats.inserted += 1; }; - // TODO: should redo everything if some transports cause a problem. - // Maybe implementation should call above loop as a closure. - if !within_tolerances && warn_insertions { // Complain (but continue) if we failed to get within tolerances // by inserting more points. @@ -346,61 +355,33 @@ (d, within_tolerances) } -#[replace_float_literals(F::cast_from(literal))] -pub(crate) fn prune_and_maybe_simple_merge< - 'a, F, GA, 𝒟, BTA, G𝒟, S, K, Reg, State, const N : usize ->( - μ : &mut DiscreteMeasure<Loc<F, N>, F>, - minus_τv : &BTFN<F, GA, BTA, N>, - μ_base : &DiscreteMeasure<Loc<F, N>, F>, - op𝒟 : &'a 𝒟, - τ : F, - ε : F, - config : &FBGenericConfig<F>, - reg : &Reg, - state : &State, - stats : &mut IterInfo<F, N>, -) -where F : Float + ToNalgebraRealField, - GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, - BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, - G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, - 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, - 𝒟::Codomain : RealMapping<F, N>, - S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, - K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, - BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, - DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, - Reg : RegTerm<F, N>, - State : AlgIteratorState { - if state.iteration() % config.merge_every == 0 { - stats.merged += μ.merge_spikes(config.merging, |μ_candidate| { - let mut d = minus_τv + op𝒟.preapply(μ_base.sub_matching(&μ_candidate)); - reg.verify_merge_candidate(&mut d, μ_candidate, τ, ε, &config) - }); - } - +pub(crate) fn prune_with_stats<F : Float, const N : usize>( + μ : &mut RNDM<F, N>, +) -> usize { let n_before_prune = μ.len(); μ.prune(); debug_assert!(μ.len() <= n_before_prune); - stats.pruned += n_before_prune - μ.len(); + n_before_prune - μ.len() } #[replace_float_literals(F::cast_from(literal))] pub(crate) fn postprocess< F : Float, V : Euclidean<F> + Clone, - A : GEMV<F, DiscreteMeasure<Loc<F, N>, F>, Codomain = V>, + A : GEMV<F, RNDM<F, N>, Codomain = V>, D : DataTerm<F, V, N>, const N : usize > ( - mut μ : DiscreteMeasure<Loc<F, N>, F>, + mut μ : RNDM<F, N>, config : &FBGenericConfig<F>, dataterm : D, opA : &A, b : &V, -) -> DiscreteMeasure<Loc<F, N>, F> -where DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F> { +) -> RNDM<F, N> +where + RNDM<F, N> : SpikeMerging<F>, + for<'a> &'a RNDM<F, N> : Instance<RNDM<F, N>>, +{ μ.merge_spikes_fitness(config.merging, |μ̃| dataterm.calculate_fit_op(μ̃, opA, b), |&v| v); @@ -437,15 +418,13 @@ fbconfig : &FBConfig<F>, iterator : I, mut plotter : SeqPlotter<F, N>, -) -> DiscreteMeasure<Loc<F, N>, F> +) -> RNDM<F, N> where F : Float + ToNalgebraRealField, I : AlgIteratorFactory<IterInfo<F, N>>, for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, - //+ std::ops::Mul<F, Output=A::Observable>, <-- FIXME: compiler overflow - A::Observable : std::ops::MulAssign<F>, GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, - A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> - + Lipschitz<&'a 𝒟, FloatType=F>, + A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> + + AdjointProductBoundedBy<RNDM<F, N>, 𝒟, FloatType=F>, BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, @@ -455,13 +434,13 @@ BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, Cube<F, N>: P2Minimise<Loc<F, N>, F>, PlotLookup : Plotting<N>, - DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, + RNDM<F, N> : SpikeMerging<F>, Reg : RegTerm<F, N> { // Set up parameters let config = &fbconfig.generic; - let op𝒟norm = op𝒟.opnorm_bound(); - let τ = fbconfig.τ0/opA.lipschitz_factor(&op𝒟).unwrap(); + let op𝒟norm = op𝒟.opnorm_bound(Radon, Linfinity); + let τ = fbconfig.τ0/opA.adjoint_product_bound(&op𝒟).unwrap(); // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled // by τ compared to the conditional gradient approach. let tolerance = config.tolerance * τ * reg.tolerance_scaling(); @@ -470,66 +449,59 @@ // Initialise iterates let mut μ = DiscreteMeasure::new(); let mut residual = -b; + + // Statistics + let full_stats = |residual : &A::Observable, + μ : &RNDM<F, N>, + ε, stats| IterInfo { + value : residual.norm2_squared_div2() + reg.apply(μ), + n_spikes : μ.len(), + ε, + //postprocessing: config.postprocessing.then(|| μ.clone()), + .. stats + }; let mut stats = IterInfo::new(); // Run the algorithm - iterator.iterate(|state| { + for state in iterator.iter_init(|| full_stats(&residual, &μ, ε, stats.clone())) { // Calculate smooth part of surrogate model. - // Using `std::mem::replace` here is not ideal, and expects that `empty_observable` - // has no significant overhead. For some reosn Rust doesn't allow us simply moving - // the residual and replacing it below before the end of this closure. - residual *= -τ; - let r = std::mem::replace(&mut residual, opA.empty_observable()); - let minus_τv = opA.preadjoint().apply(r); + let τv = opA.preadjoint().apply(residual * τ); // Save current base point let μ_base = μ.clone(); // Insert and reweigh - let (d, within_tolerances) = insert_and_reweigh( - &mut μ, &minus_τv, &μ_base, None, + let (d, _within_tolerances) = insert_and_reweigh( + &mut μ, &τv, &μ_base, None, op𝒟, op𝒟norm, τ, ε, - config, ®, state, &mut stats + config, ®, &state, &mut stats ); // Prune and possibly merge spikes - prune_and_maybe_simple_merge( - &mut μ, &minus_τv, &μ_base, - op𝒟, - τ, ε, - config, ®, state, &mut stats - ); + if config.merge_now(&state) { + stats.merged += μ.merge_spikes(config.merging, |μ_candidate| { + let mut d = &τv + op𝒟.preapply(μ_candidate.sub_matching(&μ_base)); + reg.verify_merge_candidate(&mut d, μ_candidate, τ, ε, &config) + }); + } + stats.pruned += prune_with_stats(&mut μ); // Update residual residual = calculate_residual(&μ, opA, b); - // Update main tolerance for next iteration - let ε_prev = ε; - ε = tolerance.update(ε, state.iteration()); + let iter = state.iteration(); stats.this_iters += 1; - // Give function value if needed + // Give statistics if needed state.if_verbose(|| { - // Plot if so requested - plotter.plot_spikes( - format!("iter {} end; {}", state.iteration(), within_tolerances), &d, - "start".to_string(), Some(&minus_τv), - reg.target_bounds(τ, ε_prev), &μ, - ); - // Calculate mean inner iterations and reset relevant counters. - // Return the statistics - let res = IterInfo { - value : residual.norm2_squared_div2() + reg.apply(&μ), - n_spikes : μ.len(), - ε : ε_prev, - postprocessing: config.postprocessing.then(|| μ.clone()), - .. stats - }; - stats = IterInfo::new(); - res - }) - }); + plotter.plot_spikes(iter, Some(&d), Some(&τv), &μ); + full_stats(&residual, &μ, ε, std::mem::replace(&mut stats, IterInfo::new())) + }); + + // Update main tolerance for next iteration + ε = tolerance.update(ε, iter); + } postprocess(μ, config, L2Squared, opA, b) } @@ -563,15 +535,13 @@ fbconfig : &FBConfig<F>, iterator : I, mut plotter : SeqPlotter<F, N>, -) -> DiscreteMeasure<Loc<F, N>, F> +) -> RNDM<F, N> where F : Float + ToNalgebraRealField, I : AlgIteratorFactory<IterInfo<F, N>>, for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, - //+ std::ops::Mul<F, Output=A::Observable>, <-- FIXME: compiler overflow - A::Observable : std::ops::MulAssign<F>, GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, - A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> - + Lipschitz<&'a 𝒟, FloatType=F>, + A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> + + AdjointProductBoundedBy<RNDM<F, N>, 𝒟, FloatType=F>, BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, @@ -581,13 +551,13 @@ BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, Cube<F, N>: P2Minimise<Loc<F, N>, F>, PlotLookup : Plotting<N>, - DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, + RNDM<F, N> : SpikeMerging<F>, Reg : RegTerm<F, N> { // Set up parameters let config = &fbconfig.generic; - let op𝒟norm = op𝒟.opnorm_bound(); - let τ = fbconfig.τ0/opA.lipschitz_factor(&op𝒟).unwrap(); + let op𝒟norm = op𝒟.opnorm_bound(Radon, Linfinity); + let τ = fbconfig.τ0/opA.adjoint_product_bound(&op𝒟).unwrap(); let mut λ = 1.0; // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled // by τ compared to the conditional gradient approach. @@ -598,32 +568,36 @@ let mut μ = DiscreteMeasure::new(); let mut μ_prev = DiscreteMeasure::new(); let mut residual = -b; + let mut warned_merging = false; + + // Statistics + let full_stats = |ν : &RNDM<F, N>, ε, stats| IterInfo { + value : L2Squared.calculate_fit_op(ν, opA, b) + reg.apply(ν), + n_spikes : ν.len(), + ε, + // postprocessing: config.postprocessing.then(|| ν.clone()), + .. stats + }; let mut stats = IterInfo::new(); - let mut warned_merging = false; // Run the algorithm - iterator.iterate(|state| { + for state in iterator.iter_init(|| full_stats(&μ, ε, stats.clone())) { // Calculate smooth part of surrogate model. - // Using `std::mem::replace` here is not ideal, and expects that `empty_observable` - // has no significant overhead. For some reosn Rust doesn't allow us simply moving - // the residual and replacing it below before the end of this closure. - residual *= -τ; - let r = std::mem::replace(&mut residual, opA.empty_observable()); - let minus_τv = opA.preadjoint().apply(r); + let τv = opA.preadjoint().apply(residual * τ); // Save current base point let μ_base = μ.clone(); // Insert new spikes and reweigh - let (d, within_tolerances) = insert_and_reweigh( - &mut μ, &minus_τv, &μ_base, None, + let (d, _within_tolerances) = insert_and_reweigh( + &mut μ, &τv, &μ_base, None, op𝒟, op𝒟norm, τ, ε, - config, ®, state, &mut stats + config, ®, &state, &mut stats ); // (Do not) merge spikes. - if state.iteration() % config.merge_every == 0 { + if config.merge_now(&state) { match config.merging { SpikeMergingMethod::None => { }, _ => if !warned_merging { @@ -653,32 +627,18 @@ // Update residual residual = calculate_residual(&μ, opA, b); - // Update main tolerance for next iteration - let ε_prev = ε; - ε = tolerance.update(ε, state.iteration()); + let iter = state.iteration(); stats.this_iters += 1; - // Give function value if needed + // Give statistics if needed state.if_verbose(|| { - // Plot if so requested - plotter.plot_spikes( - format!("iter {} end; {}", state.iteration(), within_tolerances), &d, - "start".to_string(), Some(&minus_τv), - reg.target_bounds(τ, ε_prev), &μ_prev, - ); - // Calculate mean inner iterations and reset relevant counters. - // Return the statistics - let res = IterInfo { - value : L2Squared.calculate_fit_op(&μ_prev, opA, b) + reg.apply(&μ_prev), - n_spikes : μ_prev.len(), - ε : ε_prev, - postprocessing: config.postprocessing.then(|| μ_prev.clone()), - .. stats - }; - stats = IterInfo::new(); - res - }) - }); + plotter.plot_spikes(iter, Some(&d), Some(&τv), &μ_prev); + full_stats(&μ_prev, ε, std::mem::replace(&mut stats, IterInfo::new())) + }); + + // Update main tolerance for next iteration + ε = tolerance.update(ε, iter); + } postprocess(μ_prev, config, L2Squared, opA, b) }