--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/forward_model/sensor_grid.rs Tue Dec 31 09:25:45 2024 -0500 @@ -0,0 +1,634 @@ +/*! +Sensor grid forward model +*/ + +use numeric_literals::replace_float_literals; +use nalgebra::base::{ + DMatrix, + DVector +}; +use std::iter::Zip; +use std::ops::RangeFrom; + +pub use alg_tools::linops::*; +use alg_tools::norms::{ + L1, Linfinity, L2, Norm +}; +use alg_tools::bisection_tree::*; +use alg_tools::mapping::{ + RealMapping, + DifferentiableMapping +}; +use alg_tools::lingrid::*; +use alg_tools::iter::{MapX, Mappable}; +use alg_tools::nalgebra_support::ToNalgebraRealField; +use alg_tools::tabledump::write_csv; +use alg_tools::error::DynError; +use alg_tools::maputil::map2; +use alg_tools::instance::Instance; + +use crate::types::*; +use crate::measures::{DiscreteMeasure, Radon}; +use crate::seminorms::{ + ConvolutionOp, + SimpleConvolutionKernel, +}; +use crate::kernels::{ + Convolution, + AutoConvolution, + BoundedBy, +}; +use crate::types::L2Squared; +use crate::transport::TransportLipschitz; +use crate::preadjoint_helper::PreadjointHelper; +use super::{ + ForwardModel, + LipschitzValues, + AdjointProductBoundedBy +}; +use crate::frank_wolfe::FindimQuadraticModel; + +type RNDM<F, const N : usize> = DiscreteMeasure<Loc<F,N>, F>; + +pub type ShiftedSensor<F, S, P, const N : usize> = Shift<Convolution<S, P>, F, N>; + +/// Trait for physical convolution models. Has blanket implementation for all cases. +pub trait Spread<F : Float, const N : usize> +: 'static + Clone + Support<F, N> + RealMapping<F, N> + Bounded<F> {} + +impl<F, T, const N : usize> Spread<F, N> for T +where F : Float, + T : 'static + Clone + Support<F, N> + Bounded<F> + RealMapping<F, N> {} + +/// Trait for compactly supported sensors. Has blanket implementation for all cases. +pub trait Sensor<F : Float, const N : usize> : Spread<F, N> + Norm<F, L1> + Norm<F, Linfinity> {} + +impl<F, T, const N : usize> Sensor<F, N> for T +where F : Float, + T : Spread<F, N> + Norm<F, L1> + Norm<F, Linfinity> {} + + +pub trait SensorGridBT<F, S, P, const N : usize> : +Clone + BTImpl<F, N, Data=usize, Agg=Bounds<F>> +where F : Float, + S : Sensor<F, N>, + P : Spread<F, N> {} + +impl<F, S, P, T, const N : usize> +SensorGridBT<F, S, P, N> +for T +where T : Clone + BTImpl<F, N, Data=usize, Agg=Bounds<F>>, + F : Float, + S : Sensor<F, N>, + P : Spread<F, N> {} + +// We need type alias bounds to access associated types +#[allow(type_alias_bounds)] +pub type SensorGridBTFN<F, S, P, BT : SensorGridBT<F, S, P, N>, const N : usize> += BTFN<F, SensorGridSupportGenerator<F, S, P, N>, BT, N>; + +/// Sensor grid forward model +#[derive(Clone)] +pub struct SensorGrid<F, S, P, BT, const N : usize> +where F : Float, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N>, + BT : SensorGridBT<F, S, P, N>, { + domain : Cube<F, N>, + sensor_count : [usize; N], + sensor : S, + spread : P, + base_sensor : Convolution<S, P>, + bt : BT, +} + +impl<F, S, P, BT, const N : usize> SensorGrid<F, S, P, BT, N> +where F : Float, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N>, + /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>*/ { + + /// Create a new sensor grid. + /// + /// The parameter `depth` indicates the search depth of the created [`BT`]s + /// for the adjoint values. + pub fn new( + domain : Cube<F, N>, + sensor_count : [usize; N], + sensor : S, + spread : P, + depth : BT::Depth + ) -> Self { + let base_sensor = Convolution(sensor.clone(), spread.clone()); + let bt = BT::new(domain, depth); + let mut sensorgrid = SensorGrid { + domain, + sensor_count, + sensor, + spread, + base_sensor, + bt, + }; + + for (x, id) in sensorgrid.grid().into_iter().zip(0usize..) { + let s = sensorgrid.shifted_sensor(x); + sensorgrid.bt.insert(id, &s); + } + + sensorgrid + } +} + + +impl<F, S, P, BT, const N : usize> SensorGrid<F, S, P, BT, N> +where F : Float, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> { + + /// Return the grid of sensor locations. + pub fn grid(&self) -> LinGrid<F, N> { + lingrid_centered(&self.domain, &self.sensor_count) + } + + /// Returns the number of sensors (number of grid points) + pub fn n_sensors(&self) -> usize { + self.sensor_count.iter().product() + } + + /// Constructs a sensor shifted by `x`. + #[inline] + fn shifted_sensor(&self, x : Loc<F, N>) -> ShiftedSensor<F, S, P, N> { + self.base_sensor.clone().shift(x) + } + + #[inline] + fn _zero_observable(&self) -> DVector<F> { + DVector::zeros(self.n_sensors()) + } + + /// Returns the maximum number of overlapping sensors $N_\psi$. + pub fn max_overlapping(&self) -> F { + let w = self.base_sensor.support_hint().width(); + let d = map2(self.domain.width(), &self.sensor_count, |wi, &i| wi/F::cast_from(i)); + w.iter() + .zip(d.iter()) + .map(|(&wi, &di)| (wi/di).ceil()) + .reduce(F::mul) + .unwrap() + } +} + +impl<F, S, P, BT, const N : usize> Mapping<RNDM<F, N>> for SensorGrid<F, S, P, BT, N> +where + F : Float, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N>, + //ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, +{ + + type Codomain = DVector<F>; + + #[inline] + fn apply<I : Instance<RNDM<F, N>>>(&self, μ : I) -> DVector<F> { + let mut y = self._zero_observable(); + self.apply_add(&mut y, μ); + y + } +} + + +impl<F, S, P, BT, const N : usize> Linear<RNDM<F, N>> for SensorGrid<F, S, P, BT, N> +where + F : Float, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N>, + //ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N> +{ } + + +#[replace_float_literals(F::cast_from(literal))] +impl<F, S, P, BT, const N : usize> GEMV<F, RNDM<F, N>, DVector<F>> for SensorGrid<F, S, P, BT, N> +where F : Float, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N>, + //ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N> +{ + + fn gemv<I : Instance<RNDM<F, N>>>( + &self, y : &mut DVector<F>, α : F, μ : I, β : F + ) { + let grid = self.grid(); + if β == 0.0 { + y.fill(0.0) + } else if β != 1.0 { + *y *= β; // Need to multiply first, as we have to be able to add to y. + } + if α == 1.0 { + self.apply_add(y, μ) + } else { + for δ in μ.ref_instance() { + for &d in self.bt.iter_at(&δ.x) { + let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d)); + y[d] += sensor.apply(&δ.x) * (α * δ.α); + } + } + } + } + + fn apply_add<I : Instance<RNDM<F, N>>>( + &self, y : &mut DVector<F>, μ : I + ) { + let grid = self.grid(); + for δ in μ.ref_instance() { + for &d in self.bt.iter_at(&δ.x) { + let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d)); + y[d] += sensor.apply(&δ.x) * δ.α; + } + } + } + +} + + +impl<F, S, P, BT, const N : usize> +BoundedLinear<RNDM<F, N>, Radon, L2, F> +for SensorGrid<F, S, P, BT, N> +where F : Float, + BT : SensorGridBT<F, S, P, N, Agg=Bounds<F>>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N>, + ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N> { + + /// An estimate on the operator norm in $𝕃(ℳ(Ω); ℝ^n)$ with $ℳ(Ω)$ equipped + /// with the Radon norm, and $ℝ^n$ with the Euclidean norm. + fn opnorm_bound(&self, _ : Radon, _ : L2) -> F { + // With {x_i}_{i=1}^n the grid centres and φ the kernel, we have + // |Aμ|_2 = sup_{|z|_2 ≤ 1} ⟨z,Αμ⟩ = sup_{|z|_2 ≤ 1} ⟨A^*z|μ⟩ + // ≤ sup_{|z|_2 ≤ 1} |A^*z|_∞ |μ|_ℳ + // = sup_{|z|_2 ≤ 1} |∑ φ(· - x_i)z_i|_∞ |μ|_ℳ + // ≤ sup_{|z|_2 ≤ 1} |φ|_∞ ∑ |z_i| |μ|_ℳ + // ≤ sup_{|z|_2 ≤ 1} |φ|_∞ √n |z|_2 |μ|_ℳ + // = |φ|_∞ √n |μ|_ℳ. + // Hence + let n = F::cast_from(self.n_sensors()); + self.base_sensor.bounds().uniform() * n.sqrt() + } +} + +type SensorGridPreadjoint<'a, A, F, const N : usize> = PreadjointHelper<'a, A, RNDM<F,N>>; + + +impl<F, S, P, BT, const N : usize> +Preadjointable<RNDM<F, N>, DVector<F>> +for SensorGrid<F, S, P, BT, N> +where F : Float, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N>, + /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, + Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { + type PreadjointCodomain = BTFN<F, SensorGridSupportGenerator<F, S, P, N>, BT, N>; + type Preadjoint<'a> = SensorGridPreadjoint<'a, Self, F, N> where Self : 'a; + + fn preadjoint(&self) -> Self::Preadjoint<'_> { + PreadjointHelper::new(self) + } +} + +#[replace_float_literals(F::cast_from(literal))] +impl<'a, F, S, P, BT, const N : usize> LipschitzValues +for SensorGridPreadjoint<'a, SensorGrid<F, S, P, BT, N>, F, N> +where F : Float, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> + Lipschitz<L2, FloatType=F> + DifferentiableMapping<Loc<F,N>> + LocalAnalysis<F, BT::Agg, N>, + for<'b> <Convolution<S, P> as DifferentiableMapping<Loc<F,N>>>::Differential<'b> : Lipschitz<L2, FloatType=F>, + /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, + Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { + + type FloatType = F; + + fn value_unit_lipschitz_factor(&self) -> Option<F> { + // The Lipschitz factor of the sensors has to be scaled by the square root of twice + // the number of overlapping sensors at a single ponit, as Lipschitz estimates involve + // two points. + let fw = self.forward_op; + let n = fw.max_overlapping(); + fw.base_sensor.lipschitz_factor(L2).map(|l| (2.0 * n).sqrt() * l) + } + + fn value_diff_unit_lipschitz_factor(&self) -> Option<F> { + // The Lipschitz factor of the sensors has to be scaled by the square root of twice + // the number of overlapping sensors at a single ponit, as Lipschitz estimates involve + // two points. + let fw = self.forward_op; + let n = fw.max_overlapping(); + fw.base_sensor.diff_ref().lipschitz_factor(L2).map(|l| (2.0 * n).sqrt() * l) + } +} + +#[derive(Clone,Debug)] +pub struct SensorGridSupportGenerator<F, S, P, const N : usize> +where F : Float, + S : Sensor<F, N>, + P : Spread<F, N> { + base_sensor : Convolution<S, P>, + grid : LinGrid<F, N>, + weights : DVector<F> +} + +impl<F, S, P, const N : usize> SensorGridSupportGenerator<F, S, P, N> +where F : Float, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> { + + #[inline] + fn construct_sensor(&self, id : usize, w : F) -> Weighted<ShiftedSensor<F, S, P, N>, F> { + let x = self.grid.entry_linear_unchecked(id); + self.base_sensor.clone().shift(x).weigh(w) + } + + #[inline] + fn construct_sensor_and_id<'a>(&'a self, (id, w) : (usize, &'a F)) + -> (usize, Weighted<ShiftedSensor<F, S, P, N>, F>) { + (id.into(), self.construct_sensor(id, *w)) + } +} + +impl<F, S, P, const N : usize> SupportGenerator<F, N> +for SensorGridSupportGenerator<F, S, P, N> +where F : Float, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> { + type Id = usize; + type SupportType = Weighted<ShiftedSensor<F, S, P, N>, F>; + type AllDataIter<'a> = MapX<'a, Zip<RangeFrom<usize>, + std::slice::Iter<'a, F>>, + Self, + (Self::Id, Self::SupportType)> + where Self : 'a; + + #[inline] + fn support_for(&self, d : Self::Id) -> Self::SupportType { + self.construct_sensor(d, self.weights[d]) + } + + #[inline] + fn support_count(&self) -> usize { + self.weights.len() + } + + #[inline] + fn all_data(&self) -> Self::AllDataIter<'_> { + (0..).zip(self.weights.as_slice().iter()).mapX(self, Self::construct_sensor_and_id) + } +} + +impl<F, S, P, BT, const N : usize> ForwardModel<DiscreteMeasure<Loc<F, N>, F>, F> +for SensorGrid<F, S, P, BT, N> +where F : Float + ToNalgebraRealField<MixedType=F> + nalgebra::RealField, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N>, + /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, + Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { + type Observable = DVector<F>; + + fn write_observable(&self, b : &Self::Observable, prefix : String) -> DynError { + let it = self.grid().into_iter().zip(b.iter()).map(|(x, &v)| (x, v)); + write_csv(it, prefix + ".txt") + } + + #[inline] + fn zero_observable(&self) -> Self::Observable { + self._zero_observable() + } +} + +impl<F, S, P, BT, const N : usize> FindimQuadraticModel<Loc<F, N>, F> +for SensorGrid<F, S, P, BT, N> +where F : Float + ToNalgebraRealField<MixedType=F> + nalgebra::RealField, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N>, + /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, + Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { + + fn findim_quadratic_model( + &self, + μ : &DiscreteMeasure<Loc<F, N>, F>, + b : &Self::Observable + ) -> (DMatrix<F::MixedType>, DVector<F::MixedType>) { + assert_eq!(b.len(), self.n_sensors()); + let mut mA = DMatrix::zeros(self.n_sensors(), μ.len()); + let grid = self.grid(); + for (mut mAcol, δ) in mA.column_iter_mut().zip(μ.iter_spikes()) { + for &d in self.bt.iter_at(&δ.x) { + let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d)); + mAcol[d] += sensor.apply(&δ.x); + } + } + let mAt = mA.transpose(); + (&mAt * mA, &mAt * b) + } +} + +/// Implements the calculation a factor $L$ such that $A_*A ≤ L 𝒟$ for $A$ the forward model +/// and $𝒟$ a seminorm of suitable form. +/// +/// **This assumes (but does not check) that the sensors are not overlapping.** +#[replace_float_literals(F::cast_from(literal))] +impl<F, BT, S, P, K, const N : usize> +AdjointProductBoundedBy<RNDM<F, N>, ConvolutionOp<F, K, BT, N>> +for SensorGrid<F, S, P, BT, N> +where F : Float + nalgebra::RealField + ToNalgebraRealField, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N>, + K : SimpleConvolutionKernel<F, N>, + AutoConvolution<P> : BoundedBy<F, K> { + + type FloatType = F; + + fn adjoint_product_bound(&self, seminorm : &ConvolutionOp<F, K, BT, N>) -> Option<F> { + // Sensors should not take on negative values to allow + // A_*A to be upper bounded by a simple convolution of `spread`. + if self.sensor.bounds().lower() < 0.0 { + return None + } + + // Calculate the factor $L_1$ for betwee $ℱ[ψ * ψ] ≤ L_1 ℱ[ρ]$ for $ψ$ the base spread + // and $ρ$ the kernel of the seminorm. + let l1 = AutoConvolution(self.spread.clone()).bounding_factor(seminorm.kernel())?; + + // Calculate the factor for transitioning from $A_*A$ to `AutoConvolution<P>`, where A + // consists of several `Convolution<S, P>` for the physical model `P` and the sensor `S`. + let l0 = self.sensor.norm(Linfinity) * self.sensor.norm(L1); + + // The final transition factor is: + Some(l0 * l1) + } +} + +#[replace_float_literals(F::cast_from(literal))] +impl<F, BT, S, P, const N : usize> TransportLipschitz<L2Squared> +for SensorGrid<F, S, P, BT, N> +where F : Float + ToNalgebraRealField, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> + Lipschitz<L2, FloatType = F> { + type FloatType = F; + + fn transport_lipschitz_factor(&self, L2Squared : L2Squared) -> Self::FloatType { + // We estimate the factor by N_ψL^2, where L is the 2-norm Lipschitz factor of + // the base sensor (sensor * base_spread), and N_ψ the maximum overlap. + // The factors two comes from Lipschitz estimates having two possible + // points of overlap. + let l = self.base_sensor.lipschitz_factor(L2).unwrap(); + 2.0 * self.max_overlapping() * l.powi(2) + } +} + + +macro_rules! make_sensorgridsupportgenerator_scalarop_rhs { + ($trait:ident, $fn:ident, $trait_assign:ident, $fn_assign:ident) => { + impl<F, S, P, const N : usize> + std::ops::$trait_assign<F> + for SensorGridSupportGenerator<F, S, P, N> + where F : Float, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> { + fn $fn_assign(&mut self, t : F) { + self.weights.$fn_assign(t); + } + } + + impl<F, S, P, const N : usize> + std::ops::$trait<F> + for SensorGridSupportGenerator<F, S, P, N> + where F : Float, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> { + type Output = SensorGridSupportGenerator<F, S, P, N>; + fn $fn(mut self, t : F) -> Self::Output { + std::ops::$trait_assign::$fn_assign(&mut self.weights, t); + self + } + } + + impl<'a, F, S, P, const N : usize> + std::ops::$trait<F> + for &'a SensorGridSupportGenerator<F, S, P, N> + where F : Float, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> { + type Output = SensorGridSupportGenerator<F, S, P, N>; + fn $fn(self, t : F) -> Self::Output { + SensorGridSupportGenerator{ + base_sensor : self.base_sensor.clone(), + grid : self.grid, + weights : (&self.weights).$fn(t) + } + } + } + } +} + +make_sensorgridsupportgenerator_scalarop_rhs!(Mul, mul, MulAssign, mul_assign); +make_sensorgridsupportgenerator_scalarop_rhs!(Div, div, DivAssign, div_assign); + +macro_rules! make_sensorgridsupportgenerator_unaryop { + ($trait:ident, $fn:ident) => { + impl<F, S, P, const N : usize> + std::ops::$trait + for SensorGridSupportGenerator<F, S, P, N> + where F : Float, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> { + type Output = SensorGridSupportGenerator<F, S, P, N>; + fn $fn(mut self) -> Self::Output { + self.weights = self.weights.$fn(); + self + } + } + + impl<'a, F, S, P, const N : usize> + std::ops::$trait + for &'a SensorGridSupportGenerator<F, S, P, N> + where F : Float, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> { + type Output = SensorGridSupportGenerator<F, S, P, N>; + fn $fn(self) -> Self::Output { + SensorGridSupportGenerator{ + base_sensor : self.base_sensor.clone(), + grid : self.grid, + weights : (&self.weights).$fn() + } + } + } + } +} + +make_sensorgridsupportgenerator_unaryop!(Neg, neg); + +impl<'a, F, S, P, BT, const N : usize> Mapping<DVector<F>> +for PreadjointHelper<'a, SensorGrid<F, S, P, BT, N>, RNDM<F,N>> +where F : Float, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, Bounds<F>, N>, + //ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, + /*Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { + + type Codomain = SensorGridBTFN<F, S, P, BT, N>; + + fn apply<I : Instance<DVector<F>>>(&self, x : I) -> Self::Codomain { + let fwd = &self.forward_op; + let generator = SensorGridSupportGenerator{ + base_sensor : fwd.base_sensor.clone(), + grid : fwd.grid(), + weights : x.own() + }; + BTFN::new_refresh(&fwd.bt, generator) + } +} + +impl<'a, F, S, P, BT, const N : usize> Linear<DVector<F>> +for PreadjointHelper<'a, SensorGrid<F, S, P, BT, N>, RNDM<F,N>> +where F : Float, + BT : SensorGridBT<F, S, P, N>, + S : Sensor<F, N>, + P : Spread<F, N>, + Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, Bounds<F>, N>, + /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, + Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { + +} +