|
1 /*! |
|
2 Sensor grid forward model |
|
3 */ |
|
4 |
|
5 use numeric_literals::replace_float_literals; |
|
6 use nalgebra::base::{ |
|
7 DMatrix, |
|
8 DVector |
|
9 }; |
|
10 use std::iter::Zip; |
|
11 use std::ops::RangeFrom; |
|
12 |
|
13 pub use alg_tools::linops::*; |
|
14 use alg_tools::norms::{ |
|
15 L1, Linfinity, L2, Norm |
|
16 }; |
|
17 use alg_tools::bisection_tree::*; |
|
18 use alg_tools::mapping::{ |
|
19 RealMapping, |
|
20 DifferentiableMapping |
|
21 }; |
|
22 use alg_tools::lingrid::*; |
|
23 use alg_tools::iter::{MapX, Mappable}; |
|
24 use alg_tools::nalgebra_support::ToNalgebraRealField; |
|
25 use alg_tools::tabledump::write_csv; |
|
26 use alg_tools::error::DynError; |
|
27 use alg_tools::maputil::map2; |
|
28 use alg_tools::instance::Instance; |
|
29 |
|
30 use crate::types::*; |
|
31 use crate::measures::{DiscreteMeasure, Radon}; |
|
32 use crate::seminorms::{ |
|
33 ConvolutionOp, |
|
34 SimpleConvolutionKernel, |
|
35 }; |
|
36 use crate::kernels::{ |
|
37 Convolution, |
|
38 AutoConvolution, |
|
39 BoundedBy, |
|
40 }; |
|
41 use crate::types::L2Squared; |
|
42 use crate::transport::TransportLipschitz; |
|
43 use crate::preadjoint_helper::PreadjointHelper; |
|
44 use super::{ |
|
45 ForwardModel, |
|
46 LipschitzValues, |
|
47 AdjointProductBoundedBy |
|
48 }; |
|
49 use crate::frank_wolfe::FindimQuadraticModel; |
|
50 |
|
51 type RNDM<F, const N : usize> = DiscreteMeasure<Loc<F,N>, F>; |
|
52 |
|
53 pub type ShiftedSensor<F, S, P, const N : usize> = Shift<Convolution<S, P>, F, N>; |
|
54 |
|
55 /// Trait for physical convolution models. Has blanket implementation for all cases. |
|
56 pub trait Spread<F : Float, const N : usize> |
|
57 : 'static + Clone + Support<F, N> + RealMapping<F, N> + Bounded<F> {} |
|
58 |
|
59 impl<F, T, const N : usize> Spread<F, N> for T |
|
60 where F : Float, |
|
61 T : 'static + Clone + Support<F, N> + Bounded<F> + RealMapping<F, N> {} |
|
62 |
|
63 /// Trait for compactly supported sensors. Has blanket implementation for all cases. |
|
64 pub trait Sensor<F : Float, const N : usize> : Spread<F, N> + Norm<F, L1> + Norm<F, Linfinity> {} |
|
65 |
|
66 impl<F, T, const N : usize> Sensor<F, N> for T |
|
67 where F : Float, |
|
68 T : Spread<F, N> + Norm<F, L1> + Norm<F, Linfinity> {} |
|
69 |
|
70 |
|
71 pub trait SensorGridBT<F, S, P, const N : usize> : |
|
72 Clone + BTImpl<F, N, Data=usize, Agg=Bounds<F>> |
|
73 where F : Float, |
|
74 S : Sensor<F, N>, |
|
75 P : Spread<F, N> {} |
|
76 |
|
77 impl<F, S, P, T, const N : usize> |
|
78 SensorGridBT<F, S, P, N> |
|
79 for T |
|
80 where T : Clone + BTImpl<F, N, Data=usize, Agg=Bounds<F>>, |
|
81 F : Float, |
|
82 S : Sensor<F, N>, |
|
83 P : Spread<F, N> {} |
|
84 |
|
85 // We need type alias bounds to access associated types |
|
86 #[allow(type_alias_bounds)] |
|
87 pub type SensorGridBTFN<F, S, P, BT : SensorGridBT<F, S, P, N>, const N : usize> |
|
88 = BTFN<F, SensorGridSupportGenerator<F, S, P, N>, BT, N>; |
|
89 |
|
90 /// Sensor grid forward model |
|
91 #[derive(Clone)] |
|
92 pub struct SensorGrid<F, S, P, BT, const N : usize> |
|
93 where F : Float, |
|
94 S : Sensor<F, N>, |
|
95 P : Spread<F, N>, |
|
96 Convolution<S, P> : Spread<F, N>, |
|
97 BT : SensorGridBT<F, S, P, N>, { |
|
98 domain : Cube<F, N>, |
|
99 sensor_count : [usize; N], |
|
100 sensor : S, |
|
101 spread : P, |
|
102 base_sensor : Convolution<S, P>, |
|
103 bt : BT, |
|
104 } |
|
105 |
|
106 impl<F, S, P, BT, const N : usize> SensorGrid<F, S, P, BT, N> |
|
107 where F : Float, |
|
108 BT : SensorGridBT<F, S, P, N>, |
|
109 S : Sensor<F, N>, |
|
110 P : Spread<F, N>, |
|
111 Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N>, |
|
112 /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>*/ { |
|
113 |
|
114 /// Create a new sensor grid. |
|
115 /// |
|
116 /// The parameter `depth` indicates the search depth of the created [`BT`]s |
|
117 /// for the adjoint values. |
|
118 pub fn new( |
|
119 domain : Cube<F, N>, |
|
120 sensor_count : [usize; N], |
|
121 sensor : S, |
|
122 spread : P, |
|
123 depth : BT::Depth |
|
124 ) -> Self { |
|
125 let base_sensor = Convolution(sensor.clone(), spread.clone()); |
|
126 let bt = BT::new(domain, depth); |
|
127 let mut sensorgrid = SensorGrid { |
|
128 domain, |
|
129 sensor_count, |
|
130 sensor, |
|
131 spread, |
|
132 base_sensor, |
|
133 bt, |
|
134 }; |
|
135 |
|
136 for (x, id) in sensorgrid.grid().into_iter().zip(0usize..) { |
|
137 let s = sensorgrid.shifted_sensor(x); |
|
138 sensorgrid.bt.insert(id, &s); |
|
139 } |
|
140 |
|
141 sensorgrid |
|
142 } |
|
143 } |
|
144 |
|
145 |
|
146 impl<F, S, P, BT, const N : usize> SensorGrid<F, S, P, BT, N> |
|
147 where F : Float, |
|
148 BT : SensorGridBT<F, S, P, N>, |
|
149 S : Sensor<F, N>, |
|
150 P : Spread<F, N>, |
|
151 Convolution<S, P> : Spread<F, N> { |
|
152 |
|
153 /// Return the grid of sensor locations. |
|
154 pub fn grid(&self) -> LinGrid<F, N> { |
|
155 lingrid_centered(&self.domain, &self.sensor_count) |
|
156 } |
|
157 |
|
158 /// Returns the number of sensors (number of grid points) |
|
159 pub fn n_sensors(&self) -> usize { |
|
160 self.sensor_count.iter().product() |
|
161 } |
|
162 |
|
163 /// Constructs a sensor shifted by `x`. |
|
164 #[inline] |
|
165 fn shifted_sensor(&self, x : Loc<F, N>) -> ShiftedSensor<F, S, P, N> { |
|
166 self.base_sensor.clone().shift(x) |
|
167 } |
|
168 |
|
169 #[inline] |
|
170 fn _zero_observable(&self) -> DVector<F> { |
|
171 DVector::zeros(self.n_sensors()) |
|
172 } |
|
173 |
|
174 /// Returns the maximum number of overlapping sensors $N_\psi$. |
|
175 pub fn max_overlapping(&self) -> F { |
|
176 let w = self.base_sensor.support_hint().width(); |
|
177 let d = map2(self.domain.width(), &self.sensor_count, |wi, &i| wi/F::cast_from(i)); |
|
178 w.iter() |
|
179 .zip(d.iter()) |
|
180 .map(|(&wi, &di)| (wi/di).ceil()) |
|
181 .reduce(F::mul) |
|
182 .unwrap() |
|
183 } |
|
184 } |
|
185 |
|
186 impl<F, S, P, BT, const N : usize> Mapping<RNDM<F, N>> for SensorGrid<F, S, P, BT, N> |
|
187 where |
|
188 F : Float, |
|
189 BT : SensorGridBT<F, S, P, N>, |
|
190 S : Sensor<F, N>, |
|
191 P : Spread<F, N>, |
|
192 Convolution<S, P> : Spread<F, N>, |
|
193 //ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, |
|
194 { |
|
195 |
|
196 type Codomain = DVector<F>; |
|
197 |
|
198 #[inline] |
|
199 fn apply<I : Instance<RNDM<F, N>>>(&self, μ : I) -> DVector<F> { |
|
200 let mut y = self._zero_observable(); |
|
201 self.apply_add(&mut y, μ); |
|
202 y |
|
203 } |
|
204 } |
|
205 |
|
206 |
|
207 impl<F, S, P, BT, const N : usize> Linear<RNDM<F, N>> for SensorGrid<F, S, P, BT, N> |
|
208 where |
|
209 F : Float, |
|
210 BT : SensorGridBT<F, S, P, N>, |
|
211 S : Sensor<F, N>, |
|
212 P : Spread<F, N>, |
|
213 Convolution<S, P> : Spread<F, N>, |
|
214 //ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N> |
|
215 { } |
|
216 |
|
217 |
|
218 #[replace_float_literals(F::cast_from(literal))] |
|
219 impl<F, S, P, BT, const N : usize> GEMV<F, RNDM<F, N>, DVector<F>> for SensorGrid<F, S, P, BT, N> |
|
220 where F : Float, |
|
221 BT : SensorGridBT<F, S, P, N>, |
|
222 S : Sensor<F, N>, |
|
223 P : Spread<F, N>, |
|
224 Convolution<S, P> : Spread<F, N>, |
|
225 //ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N> |
|
226 { |
|
227 |
|
228 fn gemv<I : Instance<RNDM<F, N>>>( |
|
229 &self, y : &mut DVector<F>, α : F, μ : I, β : F |
|
230 ) { |
|
231 let grid = self.grid(); |
|
232 if β == 0.0 { |
|
233 y.fill(0.0) |
|
234 } else if β != 1.0 { |
|
235 *y *= β; // Need to multiply first, as we have to be able to add to y. |
|
236 } |
|
237 if α == 1.0 { |
|
238 self.apply_add(y, μ) |
|
239 } else { |
|
240 for δ in μ.ref_instance() { |
|
241 for &d in self.bt.iter_at(&δ.x) { |
|
242 let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d)); |
|
243 y[d] += sensor.apply(&δ.x) * (α * δ.α); |
|
244 } |
|
245 } |
|
246 } |
|
247 } |
|
248 |
|
249 fn apply_add<I : Instance<RNDM<F, N>>>( |
|
250 &self, y : &mut DVector<F>, μ : I |
|
251 ) { |
|
252 let grid = self.grid(); |
|
253 for δ in μ.ref_instance() { |
|
254 for &d in self.bt.iter_at(&δ.x) { |
|
255 let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d)); |
|
256 y[d] += sensor.apply(&δ.x) * δ.α; |
|
257 } |
|
258 } |
|
259 } |
|
260 |
|
261 } |
|
262 |
|
263 |
|
264 impl<F, S, P, BT, const N : usize> |
|
265 BoundedLinear<RNDM<F, N>, Radon, L2, F> |
|
266 for SensorGrid<F, S, P, BT, N> |
|
267 where F : Float, |
|
268 BT : SensorGridBT<F, S, P, N, Agg=Bounds<F>>, |
|
269 S : Sensor<F, N>, |
|
270 P : Spread<F, N>, |
|
271 Convolution<S, P> : Spread<F, N>, |
|
272 ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N> { |
|
273 |
|
274 /// An estimate on the operator norm in $𝕃(ℳ(Ω); ℝ^n)$ with $ℳ(Ω)$ equipped |
|
275 /// with the Radon norm, and $ℝ^n$ with the Euclidean norm. |
|
276 fn opnorm_bound(&self, _ : Radon, _ : L2) -> F { |
|
277 // With {x_i}_{i=1}^n the grid centres and φ the kernel, we have |
|
278 // |Aμ|_2 = sup_{|z|_2 ≤ 1} ⟨z,Αμ⟩ = sup_{|z|_2 ≤ 1} ⟨A^*z|μ⟩ |
|
279 // ≤ sup_{|z|_2 ≤ 1} |A^*z|_∞ |μ|_ℳ |
|
280 // = sup_{|z|_2 ≤ 1} |∑ φ(· - x_i)z_i|_∞ |μ|_ℳ |
|
281 // ≤ sup_{|z|_2 ≤ 1} |φ|_∞ ∑ |z_i| |μ|_ℳ |
|
282 // ≤ sup_{|z|_2 ≤ 1} |φ|_∞ √n |z|_2 |μ|_ℳ |
|
283 // = |φ|_∞ √n |μ|_ℳ. |
|
284 // Hence |
|
285 let n = F::cast_from(self.n_sensors()); |
|
286 self.base_sensor.bounds().uniform() * n.sqrt() |
|
287 } |
|
288 } |
|
289 |
|
290 type SensorGridPreadjoint<'a, A, F, const N : usize> = PreadjointHelper<'a, A, RNDM<F,N>>; |
|
291 |
|
292 |
|
293 impl<F, S, P, BT, const N : usize> |
|
294 Preadjointable<RNDM<F, N>, DVector<F>> |
|
295 for SensorGrid<F, S, P, BT, N> |
|
296 where F : Float, |
|
297 BT : SensorGridBT<F, S, P, N>, |
|
298 S : Sensor<F, N>, |
|
299 P : Spread<F, N>, |
|
300 Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N>, |
|
301 /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, |
|
302 Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { |
|
303 type PreadjointCodomain = BTFN<F, SensorGridSupportGenerator<F, S, P, N>, BT, N>; |
|
304 type Preadjoint<'a> = SensorGridPreadjoint<'a, Self, F, N> where Self : 'a; |
|
305 |
|
306 fn preadjoint(&self) -> Self::Preadjoint<'_> { |
|
307 PreadjointHelper::new(self) |
|
308 } |
|
309 } |
|
310 |
|
311 #[replace_float_literals(F::cast_from(literal))] |
|
312 impl<'a, F, S, P, BT, const N : usize> LipschitzValues |
|
313 for SensorGridPreadjoint<'a, SensorGrid<F, S, P, BT, N>, F, N> |
|
314 where F : Float, |
|
315 BT : SensorGridBT<F, S, P, N>, |
|
316 S : Sensor<F, N>, |
|
317 P : Spread<F, N>, |
|
318 Convolution<S, P> : Spread<F, N> + Lipschitz<L2, FloatType=F> + DifferentiableMapping<Loc<F,N>> + LocalAnalysis<F, BT::Agg, N>, |
|
319 for<'b> <Convolution<S, P> as DifferentiableMapping<Loc<F,N>>>::Differential<'b> : Lipschitz<L2, FloatType=F>, |
|
320 /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, |
|
321 Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { |
|
322 |
|
323 type FloatType = F; |
|
324 |
|
325 fn value_unit_lipschitz_factor(&self) -> Option<F> { |
|
326 // The Lipschitz factor of the sensors has to be scaled by the square root of twice |
|
327 // the number of overlapping sensors at a single ponit, as Lipschitz estimates involve |
|
328 // two points. |
|
329 let fw = self.forward_op; |
|
330 let n = fw.max_overlapping(); |
|
331 fw.base_sensor.lipschitz_factor(L2).map(|l| (2.0 * n).sqrt() * l) |
|
332 } |
|
333 |
|
334 fn value_diff_unit_lipschitz_factor(&self) -> Option<F> { |
|
335 // The Lipschitz factor of the sensors has to be scaled by the square root of twice |
|
336 // the number of overlapping sensors at a single ponit, as Lipschitz estimates involve |
|
337 // two points. |
|
338 let fw = self.forward_op; |
|
339 let n = fw.max_overlapping(); |
|
340 fw.base_sensor.diff_ref().lipschitz_factor(L2).map(|l| (2.0 * n).sqrt() * l) |
|
341 } |
|
342 } |
|
343 |
|
344 #[derive(Clone,Debug)] |
|
345 pub struct SensorGridSupportGenerator<F, S, P, const N : usize> |
|
346 where F : Float, |
|
347 S : Sensor<F, N>, |
|
348 P : Spread<F, N> { |
|
349 base_sensor : Convolution<S, P>, |
|
350 grid : LinGrid<F, N>, |
|
351 weights : DVector<F> |
|
352 } |
|
353 |
|
354 impl<F, S, P, const N : usize> SensorGridSupportGenerator<F, S, P, N> |
|
355 where F : Float, |
|
356 S : Sensor<F, N>, |
|
357 P : Spread<F, N>, |
|
358 Convolution<S, P> : Spread<F, N> { |
|
359 |
|
360 #[inline] |
|
361 fn construct_sensor(&self, id : usize, w : F) -> Weighted<ShiftedSensor<F, S, P, N>, F> { |
|
362 let x = self.grid.entry_linear_unchecked(id); |
|
363 self.base_sensor.clone().shift(x).weigh(w) |
|
364 } |
|
365 |
|
366 #[inline] |
|
367 fn construct_sensor_and_id<'a>(&'a self, (id, w) : (usize, &'a F)) |
|
368 -> (usize, Weighted<ShiftedSensor<F, S, P, N>, F>) { |
|
369 (id.into(), self.construct_sensor(id, *w)) |
|
370 } |
|
371 } |
|
372 |
|
373 impl<F, S, P, const N : usize> SupportGenerator<F, N> |
|
374 for SensorGridSupportGenerator<F, S, P, N> |
|
375 where F : Float, |
|
376 S : Sensor<F, N>, |
|
377 P : Spread<F, N>, |
|
378 Convolution<S, P> : Spread<F, N> { |
|
379 type Id = usize; |
|
380 type SupportType = Weighted<ShiftedSensor<F, S, P, N>, F>; |
|
381 type AllDataIter<'a> = MapX<'a, Zip<RangeFrom<usize>, |
|
382 std::slice::Iter<'a, F>>, |
|
383 Self, |
|
384 (Self::Id, Self::SupportType)> |
|
385 where Self : 'a; |
|
386 |
|
387 #[inline] |
|
388 fn support_for(&self, d : Self::Id) -> Self::SupportType { |
|
389 self.construct_sensor(d, self.weights[d]) |
|
390 } |
|
391 |
|
392 #[inline] |
|
393 fn support_count(&self) -> usize { |
|
394 self.weights.len() |
|
395 } |
|
396 |
|
397 #[inline] |
|
398 fn all_data(&self) -> Self::AllDataIter<'_> { |
|
399 (0..).zip(self.weights.as_slice().iter()).mapX(self, Self::construct_sensor_and_id) |
|
400 } |
|
401 } |
|
402 |
|
403 impl<F, S, P, BT, const N : usize> ForwardModel<DiscreteMeasure<Loc<F, N>, F>, F> |
|
404 for SensorGrid<F, S, P, BT, N> |
|
405 where F : Float + ToNalgebraRealField<MixedType=F> + nalgebra::RealField, |
|
406 BT : SensorGridBT<F, S, P, N>, |
|
407 S : Sensor<F, N>, |
|
408 P : Spread<F, N>, |
|
409 Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N>, |
|
410 /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, |
|
411 Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { |
|
412 type Observable = DVector<F>; |
|
413 |
|
414 fn write_observable(&self, b : &Self::Observable, prefix : String) -> DynError { |
|
415 let it = self.grid().into_iter().zip(b.iter()).map(|(x, &v)| (x, v)); |
|
416 write_csv(it, prefix + ".txt") |
|
417 } |
|
418 |
|
419 #[inline] |
|
420 fn zero_observable(&self) -> Self::Observable { |
|
421 self._zero_observable() |
|
422 } |
|
423 } |
|
424 |
|
425 impl<F, S, P, BT, const N : usize> FindimQuadraticModel<Loc<F, N>, F> |
|
426 for SensorGrid<F, S, P, BT, N> |
|
427 where F : Float + ToNalgebraRealField<MixedType=F> + nalgebra::RealField, |
|
428 BT : SensorGridBT<F, S, P, N>, |
|
429 S : Sensor<F, N>, |
|
430 P : Spread<F, N>, |
|
431 Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N>, |
|
432 /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, |
|
433 Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { |
|
434 |
|
435 fn findim_quadratic_model( |
|
436 &self, |
|
437 μ : &DiscreteMeasure<Loc<F, N>, F>, |
|
438 b : &Self::Observable |
|
439 ) -> (DMatrix<F::MixedType>, DVector<F::MixedType>) { |
|
440 assert_eq!(b.len(), self.n_sensors()); |
|
441 let mut mA = DMatrix::zeros(self.n_sensors(), μ.len()); |
|
442 let grid = self.grid(); |
|
443 for (mut mAcol, δ) in mA.column_iter_mut().zip(μ.iter_spikes()) { |
|
444 for &d in self.bt.iter_at(&δ.x) { |
|
445 let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d)); |
|
446 mAcol[d] += sensor.apply(&δ.x); |
|
447 } |
|
448 } |
|
449 let mAt = mA.transpose(); |
|
450 (&mAt * mA, &mAt * b) |
|
451 } |
|
452 } |
|
453 |
|
454 /// Implements the calculation a factor $L$ such that $A_*A ≤ L 𝒟$ for $A$ the forward model |
|
455 /// and $𝒟$ a seminorm of suitable form. |
|
456 /// |
|
457 /// **This assumes (but does not check) that the sensors are not overlapping.** |
|
458 #[replace_float_literals(F::cast_from(literal))] |
|
459 impl<F, BT, S, P, K, const N : usize> |
|
460 AdjointProductBoundedBy<RNDM<F, N>, ConvolutionOp<F, K, BT, N>> |
|
461 for SensorGrid<F, S, P, BT, N> |
|
462 where F : Float + nalgebra::RealField + ToNalgebraRealField, |
|
463 BT : SensorGridBT<F, S, P, N>, |
|
464 S : Sensor<F, N>, |
|
465 P : Spread<F, N>, |
|
466 Convolution<S, P> : Spread<F, N>, |
|
467 K : SimpleConvolutionKernel<F, N>, |
|
468 AutoConvolution<P> : BoundedBy<F, K> { |
|
469 |
|
470 type FloatType = F; |
|
471 |
|
472 fn adjoint_product_bound(&self, seminorm : &ConvolutionOp<F, K, BT, N>) -> Option<F> { |
|
473 // Sensors should not take on negative values to allow |
|
474 // A_*A to be upper bounded by a simple convolution of `spread`. |
|
475 if self.sensor.bounds().lower() < 0.0 { |
|
476 return None |
|
477 } |
|
478 |
|
479 // Calculate the factor $L_1$ for betwee $ℱ[ψ * ψ] ≤ L_1 ℱ[ρ]$ for $ψ$ the base spread |
|
480 // and $ρ$ the kernel of the seminorm. |
|
481 let l1 = AutoConvolution(self.spread.clone()).bounding_factor(seminorm.kernel())?; |
|
482 |
|
483 // Calculate the factor for transitioning from $A_*A$ to `AutoConvolution<P>`, where A |
|
484 // consists of several `Convolution<S, P>` for the physical model `P` and the sensor `S`. |
|
485 let l0 = self.sensor.norm(Linfinity) * self.sensor.norm(L1); |
|
486 |
|
487 // The final transition factor is: |
|
488 Some(l0 * l1) |
|
489 } |
|
490 } |
|
491 |
|
492 #[replace_float_literals(F::cast_from(literal))] |
|
493 impl<F, BT, S, P, const N : usize> TransportLipschitz<L2Squared> |
|
494 for SensorGrid<F, S, P, BT, N> |
|
495 where F : Float + ToNalgebraRealField, |
|
496 BT : SensorGridBT<F, S, P, N>, |
|
497 S : Sensor<F, N>, |
|
498 P : Spread<F, N>, |
|
499 Convolution<S, P> : Spread<F, N> + Lipschitz<L2, FloatType = F> { |
|
500 type FloatType = F; |
|
501 |
|
502 fn transport_lipschitz_factor(&self, L2Squared : L2Squared) -> Self::FloatType { |
|
503 // We estimate the factor by N_ψL^2, where L is the 2-norm Lipschitz factor of |
|
504 // the base sensor (sensor * base_spread), and N_ψ the maximum overlap. |
|
505 // The factors two comes from Lipschitz estimates having two possible |
|
506 // points of overlap. |
|
507 let l = self.base_sensor.lipschitz_factor(L2).unwrap(); |
|
508 2.0 * self.max_overlapping() * l.powi(2) |
|
509 } |
|
510 } |
|
511 |
|
512 |
|
513 macro_rules! make_sensorgridsupportgenerator_scalarop_rhs { |
|
514 ($trait:ident, $fn:ident, $trait_assign:ident, $fn_assign:ident) => { |
|
515 impl<F, S, P, const N : usize> |
|
516 std::ops::$trait_assign<F> |
|
517 for SensorGridSupportGenerator<F, S, P, N> |
|
518 where F : Float, |
|
519 S : Sensor<F, N>, |
|
520 P : Spread<F, N>, |
|
521 Convolution<S, P> : Spread<F, N> { |
|
522 fn $fn_assign(&mut self, t : F) { |
|
523 self.weights.$fn_assign(t); |
|
524 } |
|
525 } |
|
526 |
|
527 impl<F, S, P, const N : usize> |
|
528 std::ops::$trait<F> |
|
529 for SensorGridSupportGenerator<F, S, P, N> |
|
530 where F : Float, |
|
531 S : Sensor<F, N>, |
|
532 P : Spread<F, N>, |
|
533 Convolution<S, P> : Spread<F, N> { |
|
534 type Output = SensorGridSupportGenerator<F, S, P, N>; |
|
535 fn $fn(mut self, t : F) -> Self::Output { |
|
536 std::ops::$trait_assign::$fn_assign(&mut self.weights, t); |
|
537 self |
|
538 } |
|
539 } |
|
540 |
|
541 impl<'a, F, S, P, const N : usize> |
|
542 std::ops::$trait<F> |
|
543 for &'a SensorGridSupportGenerator<F, S, P, N> |
|
544 where F : Float, |
|
545 S : Sensor<F, N>, |
|
546 P : Spread<F, N>, |
|
547 Convolution<S, P> : Spread<F, N> { |
|
548 type Output = SensorGridSupportGenerator<F, S, P, N>; |
|
549 fn $fn(self, t : F) -> Self::Output { |
|
550 SensorGridSupportGenerator{ |
|
551 base_sensor : self.base_sensor.clone(), |
|
552 grid : self.grid, |
|
553 weights : (&self.weights).$fn(t) |
|
554 } |
|
555 } |
|
556 } |
|
557 } |
|
558 } |
|
559 |
|
560 make_sensorgridsupportgenerator_scalarop_rhs!(Mul, mul, MulAssign, mul_assign); |
|
561 make_sensorgridsupportgenerator_scalarop_rhs!(Div, div, DivAssign, div_assign); |
|
562 |
|
563 macro_rules! make_sensorgridsupportgenerator_unaryop { |
|
564 ($trait:ident, $fn:ident) => { |
|
565 impl<F, S, P, const N : usize> |
|
566 std::ops::$trait |
|
567 for SensorGridSupportGenerator<F, S, P, N> |
|
568 where F : Float, |
|
569 S : Sensor<F, N>, |
|
570 P : Spread<F, N>, |
|
571 Convolution<S, P> : Spread<F, N> { |
|
572 type Output = SensorGridSupportGenerator<F, S, P, N>; |
|
573 fn $fn(mut self) -> Self::Output { |
|
574 self.weights = self.weights.$fn(); |
|
575 self |
|
576 } |
|
577 } |
|
578 |
|
579 impl<'a, F, S, P, const N : usize> |
|
580 std::ops::$trait |
|
581 for &'a SensorGridSupportGenerator<F, S, P, N> |
|
582 where F : Float, |
|
583 S : Sensor<F, N>, |
|
584 P : Spread<F, N>, |
|
585 Convolution<S, P> : Spread<F, N> { |
|
586 type Output = SensorGridSupportGenerator<F, S, P, N>; |
|
587 fn $fn(self) -> Self::Output { |
|
588 SensorGridSupportGenerator{ |
|
589 base_sensor : self.base_sensor.clone(), |
|
590 grid : self.grid, |
|
591 weights : (&self.weights).$fn() |
|
592 } |
|
593 } |
|
594 } |
|
595 } |
|
596 } |
|
597 |
|
598 make_sensorgridsupportgenerator_unaryop!(Neg, neg); |
|
599 |
|
600 impl<'a, F, S, P, BT, const N : usize> Mapping<DVector<F>> |
|
601 for PreadjointHelper<'a, SensorGrid<F, S, P, BT, N>, RNDM<F,N>> |
|
602 where F : Float, |
|
603 BT : SensorGridBT<F, S, P, N>, |
|
604 S : Sensor<F, N>, |
|
605 P : Spread<F, N>, |
|
606 Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
|
607 //ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, |
|
608 /*Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { |
|
609 |
|
610 type Codomain = SensorGridBTFN<F, S, P, BT, N>; |
|
611 |
|
612 fn apply<I : Instance<DVector<F>>>(&self, x : I) -> Self::Codomain { |
|
613 let fwd = &self.forward_op; |
|
614 let generator = SensorGridSupportGenerator{ |
|
615 base_sensor : fwd.base_sensor.clone(), |
|
616 grid : fwd.grid(), |
|
617 weights : x.own() |
|
618 }; |
|
619 BTFN::new_refresh(&fwd.bt, generator) |
|
620 } |
|
621 } |
|
622 |
|
623 impl<'a, F, S, P, BT, const N : usize> Linear<DVector<F>> |
|
624 for PreadjointHelper<'a, SensorGrid<F, S, P, BT, N>, RNDM<F,N>> |
|
625 where F : Float, |
|
626 BT : SensorGridBT<F, S, P, N>, |
|
627 S : Sensor<F, N>, |
|
628 P : Spread<F, N>, |
|
629 Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
|
630 /*ShiftedSensor<F, S, P, N> : LocalAnalysis<F, BT::Agg, N>, |
|
631 Weighted<ShiftedSensor<F, S, P, N>, F> : LocalAnalysis<F, BT::Agg, N>*/ { |
|
632 |
|
633 } |
|
634 |