9 //use nalgebra::{DVector, DMatrix}; |
9 //use nalgebra::{DVector, DMatrix}; |
10 use std::iter::Iterator; |
10 use std::iter::Iterator; |
11 |
11 |
12 use alg_tools::iterate::AlgIteratorFactory; |
12 use alg_tools::iterate::AlgIteratorFactory; |
13 use alg_tools::euclidean::Euclidean; |
13 use alg_tools::euclidean::Euclidean; |
14 use alg_tools::sets::Cube; |
|
15 use alg_tools::loc::Loc; |
|
16 use alg_tools::mapping::{Mapping, DifferentiableRealMapping, Instance}; |
14 use alg_tools::mapping::{Mapping, DifferentiableRealMapping, Instance}; |
17 use alg_tools::norms::Norm; |
15 use alg_tools::norms::Norm; |
18 use alg_tools::direct_product::Pair; |
16 use alg_tools::direct_product::Pair; |
19 use alg_tools::bisection_tree::{ |
|
20 BTFN, |
|
21 PreBTFN, |
|
22 Bounds, |
|
23 BTNodeLookup, |
|
24 BTNode, |
|
25 BTSearch, |
|
26 P2Minimise, |
|
27 SupportGenerator, |
|
28 LocalAnalysis, |
|
29 //Bounded, |
|
30 }; |
|
31 use alg_tools::mapping::RealMapping; |
|
32 use alg_tools::nalgebra_support::ToNalgebraRealField; |
17 use alg_tools::nalgebra_support::ToNalgebraRealField; |
33 use alg_tools::linops::{ |
18 use alg_tools::linops::{ |
34 BoundedLinear, AXPY, GEMV, Adjointable, IdOp, |
19 BoundedLinear, AXPY, GEMV, Adjointable, IdOp, |
35 }; |
20 }; |
36 use alg_tools::convex::{Conjugable, Prox}; |
21 use alg_tools::convex::{Conjugable, Prox}; |
37 use alg_tools::norms::{L2, Linfinity, PairNorm}; |
22 use alg_tools::norms::{L2, PairNorm}; |
38 |
23 |
39 use crate::types::*; |
24 use crate::types::*; |
40 use crate::measures::{DiscreteMeasure, Radon, RNDM}; |
25 use crate::measures::{DiscreteMeasure, Radon, RNDM}; |
41 use crate::measures::merging::SpikeMerging; |
26 use crate::measures::merging::SpikeMerging; |
42 use crate::forward_model::{ |
27 use crate::forward_model::{ |
43 ForwardModel, |
28 ForwardModel, |
44 AdjointProductPairBoundedBy, |
29 AdjointProductPairBoundedBy, |
45 LipschitzValues, |
30 LipschitzValues, |
46 }; |
31 }; |
47 // use crate::transport::TransportLipschitz; |
32 // use crate::transport::TransportLipschitz; |
48 use crate::seminorms::DiscreteMeasureOp; |
|
49 //use crate::tolerance::Tolerance; |
33 //use crate::tolerance::Tolerance; |
50 use crate::plot::{ |
34 use crate::plot::{ |
51 SeqPlotter, |
35 SeqPlotter, |
52 Plotting, |
36 Plotting, |
53 PlotLookup |
37 PlotLookup |
99 /// using sliding primal-dual proximal splitting |
83 /// using sliding primal-dual proximal splitting |
100 /// |
84 /// |
101 /// The parametrisation is as for [`crate::forward_pdps::pointsource_forward_pdps_pair`]. |
85 /// The parametrisation is as for [`crate::forward_pdps::pointsource_forward_pdps_pair`]. |
102 #[replace_float_literals(F::cast_from(literal))] |
86 #[replace_float_literals(F::cast_from(literal))] |
103 pub fn pointsource_sliding_pdps_pair< |
87 pub fn pointsource_sliding_pdps_pair< |
104 'a, F, I, A, GA, 𝒟, BTA, BT𝒟, G𝒟, S, K, Reg, Z, R, Y, /*KOpM, */ KOpZ, H, const N : usize |
88 F, I, A, S, Reg, P, Z, R, Y, /*KOpM, */ KOpZ, H, const N : usize |
105 >( |
89 >( |
106 opA : &'a A, |
90 opA : &A, |
107 b : &A::Observable, |
91 b : &A::Observable, |
108 reg : Reg, |
92 reg : Reg, |
109 op𝒟 : &'a 𝒟, |
93 prox_penalty : &P, |
110 config : &SlidingPDPSConfig<F>, |
94 config : &SlidingPDPSConfig<F>, |
111 iterator : I, |
95 iterator : I, |
112 mut plotter : SeqPlotter<F, N>, |
96 mut plotter : SeqPlotter<F, N>, |
113 //opKμ : KOpM, |
97 //opKμ : KOpM, |
114 opKz : &KOpZ, |
98 opKz : &KOpZ, |
118 mut y : Y, |
102 mut y : Y, |
119 ) -> MeasureZ<F, Z, N> |
103 ) -> MeasureZ<F, Z, N> |
120 where |
104 where |
121 F : Float + ToNalgebraRealField, |
105 F : Float + ToNalgebraRealField, |
122 I : AlgIteratorFactory<IterInfo<F, N>>, |
106 I : AlgIteratorFactory<IterInfo<F, N>>, |
123 for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable> + Instance<A::Observable>, |
|
124 for<'b> A::Preadjoint<'b> : LipschitzValues<FloatType=F>, |
|
125 BTFN<F, GA, BTA, N> : DifferentiableRealMapping<F, N>, |
|
126 GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, |
|
127 A : ForwardModel< |
107 A : ForwardModel< |
128 MeasureZ<F, Z, N>, |
108 MeasureZ<F, Z, N>, |
129 F, |
109 F, |
130 PairNorm<Radon, L2, L2>, |
110 PairNorm<Radon, L2, L2>, |
131 PreadjointCodomain = Pair<BTFN<F, GA, BTA, N>, Z>, |
111 PreadjointCodomain = Pair<S, Z>, |
132 > |
112 > |
133 + AdjointProductPairBoundedBy<MeasureZ<F, Z, N>, 𝒟, IdOp<Z>, FloatType=F>, |
113 + AdjointProductPairBoundedBy<MeasureZ<F, Z, N>, P, IdOp<Z>, FloatType=F>, |
134 BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
114 S : DifferentiableRealMapping<F, N>, |
135 G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, |
115 for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable> + Instance<A::Observable>, |
136 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>, |
116 for<'b> A::Preadjoint<'b> : LipschitzValues<FloatType=F>, |
137 Codomain = BTFN<F, G𝒟, BT𝒟, N>>, |
|
138 BT𝒟 : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
|
139 S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N> |
|
140 + DifferentiableRealMapping<F, N>, |
|
141 K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
|
142 //+ Differentiable<Loc<F, N>, Derivative=Loc<F,N>>, |
|
143 BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, |
|
144 Cube<F, N>: P2Minimise<Loc<F, N>, F>, |
|
145 PlotLookup : Plotting<N>, |
117 PlotLookup : Plotting<N>, |
146 RNDM<F, N> : SpikeMerging<F>, |
118 RNDM<F, N> : SpikeMerging<F>, |
147 Reg : SlidingRegTerm<F, N>, |
119 Reg : SlidingRegTerm<F, N>, |
|
120 P : ProxPenalty<F, S, Reg, N>, |
148 // KOpM : Linear<RNDM<F, N>, Codomain=Y> |
121 // KOpM : Linear<RNDM<F, N>, Codomain=Y> |
149 // + GEMV<F, RNDM<F, N>> |
122 // + GEMV<F, RNDM<F, N>> |
150 // + Preadjointable< |
123 // + Preadjointable< |
151 // RNDM<F, N>, Y, |
124 // RNDM<F, N>, Y, |
152 // PreadjointCodomain = BTFN<F, GA, BTA, N>, |
125 // PreadjointCodomain = S, |
153 // > |
126 // > |
154 // + TransportLipschitz<L2Squared, FloatType=F> |
127 // + TransportLipschitz<L2Squared, FloatType=F> |
155 // + AdjointProductBoundedBy<RNDM<F, N>, 𝒟, FloatType=F>, |
128 // + AdjointProductBoundedBy<RNDM<F, N>, 𝒟, FloatType=F>, |
156 // for<'b> KOpM::Preadjoint<'b> : GEMV<F, Y>, |
129 // for<'b> KOpM::Preadjoint<'b> : GEMV<F, Y>, |
157 // Since Z is Hilbert, we may just as well use adjoints for K_z. |
130 // Since Z is Hilbert, we may just as well use adjoints for K_z. |
183 let mut γ1 = DiscreteMeasure::new(); |
156 let mut γ1 = DiscreteMeasure::new(); |
184 let mut residual = calculate_residual(Pair(&μ, &z), opA, b); |
157 let mut residual = calculate_residual(Pair(&μ, &z), opA, b); |
185 let zero_z = z.similar_origin(); |
158 let zero_z = z.similar_origin(); |
186 |
159 |
187 // Set up parameters |
160 // Set up parameters |
188 let op𝒟norm = op𝒟.opnorm_bound(Radon, Linfinity); |
|
189 // TODO: maybe this PairNorm doesn't make sense here? |
161 // TODO: maybe this PairNorm doesn't make sense here? |
190 let opAnorm = opA.opnorm_bound(PairNorm(Radon, L2, L2), L2); |
162 let opAnorm = opA.opnorm_bound(PairNorm(Radon, L2, L2), L2); |
191 let bigθ = 0.0; //opKμ.transport_lipschitz_factor(L2Squared); |
163 let bigθ = 0.0; //opKμ.transport_lipschitz_factor(L2Squared); |
192 let bigM = 0.0; //opKμ.adjoint_product_bound(&op𝒟).unwrap().sqrt(); |
164 let bigM = 0.0; //opKμ.adjoint_product_bound(&op𝒟).unwrap().sqrt(); |
193 let nKz = opKz.opnorm_bound(L2, L2); |
165 let nKz = opKz.opnorm_bound(L2, L2); |
194 let ℓ = 0.0; |
166 let ℓ = 0.0; |
195 let opIdZ = IdOp::new(); |
167 let opIdZ = IdOp::new(); |
196 let (l, l_z) = opA.adjoint_product_pair_bound(&op𝒟, &opIdZ).unwrap(); |
168 let (l, l_z) = opA.adjoint_product_pair_bound(prox_penalty, &opIdZ).unwrap(); |
197 // We need to satisfy |
169 // We need to satisfy |
198 // |
170 // |
199 // τσ_dM(1-σ_p L_z)/(1 - τ L) + [σ_p L_z + σ_pσ_d‖K_z‖^2] < 1 |
171 // τσ_dM(1-σ_p L_z)/(1 - τ L) + [σ_p L_z + σ_pσ_d‖K_z‖^2] < 1 |
200 // ^^^^^^^^^^^^^^^^^^^^^^^^^ |
172 // ^^^^^^^^^^^^^^^^^^^^^^^^^ |
201 // with 1 > σ_p L_z and 1 > τ L. |
173 // with 1 > σ_p L_z and 1 > τ L. |
276 v, &config.transport, |
248 v, &config.transport, |
277 ); |
249 ); |
278 |
250 |
279 // Solve finite-dimensional subproblem several times until the dual variable for the |
251 // Solve finite-dimensional subproblem several times until the dual variable for the |
280 // regularisation term conforms to the assumptions made for the transport above. |
252 // regularisation term conforms to the assumptions made for the transport above. |
281 let (d, _within_tolerances, Pair(τv̆, τz̆)) = 'adapt_transport: loop { |
253 let (maybe_d, _within_tolerances, Pair(τv̆, τz̆)) = 'adapt_transport: loop { |
282 // Calculate τv̆ = τA_*(A[μ_transported + μ_transported_base]-b) |
254 // Calculate τv̆ = τA_*(A[μ_transported + μ_transported_base]-b) |
283 let residual_μ̆ = calculate_residual2(Pair(&γ1, &z), |
255 let residual_μ̆ = calculate_residual2(Pair(&γ1, &z), |
284 Pair(&μ_base_minus_γ0, &zero_z), |
256 Pair(&μ_base_minus_γ0, &zero_z), |
285 opA, b); |
257 opA, b); |
286 let Pair(τv̆, τz) = opA.preadjoint().apply(residual_μ̆ * τ); |
258 let mut τv̆z = opA.preadjoint().apply(residual_μ̆ * τ); |
287 // opKμ.preadjoint().gemv(&mut τv̆, τ, y, 1.0); |
259 // opKμ.preadjoint().gemv(&mut τv̆, τ, y, 1.0); |
288 |
260 |
289 // Construct μ^{k+1} by solving finite-dimensional subproblems and insert new spikes. |
261 // Construct μ^{k+1} by solving finite-dimensional subproblems and insert new spikes. |
290 let (d, within_tolerances) = insert_and_reweigh( |
262 let (maybe_d, within_tolerances) = prox_penalty.insert_and_reweigh( |
291 &mut μ, &τv̆, &γ1, Some(&μ_base_minus_γ0), |
263 &mut μ, &mut τv̆z.0, &γ1, Some(&μ_base_minus_γ0), |
292 op𝒟, op𝒟norm, |
|
293 τ, ε, &config.insertion, |
264 τ, ε, &config.insertion, |
294 ®, &state, &mut stats, |
265 ®, &state, &mut stats, |
295 ); |
266 ); |
296 |
267 |
297 // A posteriori transport adaptation. |
268 // A posteriori transport adaptation. |
298 // TODO: this does not properly treat v^{k+1} - v̆^k that depends on z^{k+1}! |
269 // TODO: this does not properly treat v^{k+1} - v̆^k that depends on z^{k+1}! |
299 if aposteriori_transport( |
270 if aposteriori_transport( |
300 &mut γ1, &mut μ, &mut μ_base_minus_γ0, &μ_base_masses, |
271 &mut γ1, &mut μ, &mut μ_base_minus_γ0, &μ_base_masses, |
301 ε, &config.transport |
272 ε, &config.transport |
302 ) { |
273 ) { |
303 break 'adapt_transport (d, within_tolerances, Pair(τv̆, τz)) |
274 break 'adapt_transport (maybe_d, within_tolerances, τv̆z) |
304 } |
275 } |
305 }; |
276 }; |
306 |
277 |
307 stats.untransported_fraction = Some({ |
278 stats.untransported_fraction = Some({ |
308 assert_eq!(μ_base_masses.len(), γ1.len()); |
279 assert_eq!(μ_base_masses.len(), γ1.len()); |
362 // Give statistics if requested |
333 // Give statistics if requested |
363 let iter = state.iteration(); |
334 let iter = state.iteration(); |
364 stats.this_iters += 1; |
335 stats.this_iters += 1; |
365 |
336 |
366 state.if_verbose(|| { |
337 state.if_verbose(|| { |
367 plotter.plot_spikes(iter, Some(&d), Some(&τv̆), &μ); |
338 plotter.plot_spikes(iter, maybe_d.as_ref(), Some(&τv̆), &μ); |
368 full_stats(&residual, &μ, &z, ε, std::mem::replace(&mut stats, IterInfo::new())) |
339 full_stats(&residual, &μ, &z, ε, std::mem::replace(&mut stats, IterInfo::new())) |
369 }); |
340 }); |
370 |
341 |
371 // Update main tolerance for next iteration |
342 // Update main tolerance for next iteration |
372 ε = tolerance.update(ε, iter); |
343 ε = tolerance.update(ε, iter); |