| 10 use std::iter::Iterator; |
10 use std::iter::Iterator; |
| 11 |
11 |
| 12 use alg_tools::iterate::AlgIteratorFactory; |
12 use alg_tools::iterate::AlgIteratorFactory; |
| 13 use alg_tools::euclidean::Euclidean; |
13 use alg_tools::euclidean::Euclidean; |
| 14 use alg_tools::mapping::{Mapping, DifferentiableRealMapping, Instance}; |
14 use alg_tools::mapping::{Mapping, DifferentiableRealMapping, Instance}; |
| 15 use alg_tools::norms::Norm; |
15 use alg_tools::norms::{Norm, Dist}; |
| 16 use alg_tools::direct_product::Pair; |
16 use alg_tools::direct_product::Pair; |
| 17 use alg_tools::nalgebra_support::ToNalgebraRealField; |
17 use alg_tools::nalgebra_support::ToNalgebraRealField; |
| 18 use alg_tools::linops::{ |
18 use alg_tools::linops::{ |
| 19 BoundedLinear, AXPY, GEMV, Adjointable, IdOp, |
19 BoundedLinear, AXPY, GEMV, Adjointable, IdOp, |
| 20 }; |
20 }; |
| 43 TransportConfig, |
43 TransportConfig, |
| 44 TransportStepLength, |
44 TransportStepLength, |
| 45 initial_transport, |
45 initial_transport, |
| 46 aposteriori_transport, |
46 aposteriori_transport, |
| 47 }; |
47 }; |
| 48 use crate::dataterm::{calculate_residual, calculate_residual2}; |
48 use crate::dataterm::{ |
| |
49 calculate_residual2, |
| |
50 calculate_residual, |
| |
51 }; |
| |
52 |
| 49 |
53 |
| 50 /// Settings for [`pointsource_sliding_pdps_pair`]. |
54 /// Settings for [`pointsource_sliding_pdps_pair`]. |
| 51 #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] |
55 #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] |
| 52 #[serde(default)] |
56 #[serde(default)] |
| 53 pub struct SlidingPDPSConfig<F : Float> { |
57 pub struct SlidingPDPSConfig<F : Float> { |
| 132 + GEMV<F, Z> |
135 + GEMV<F, Z> |
| 133 + Adjointable<Z, Y, AdjointCodomain = Z>, |
136 + Adjointable<Z, Y, AdjointCodomain = Z>, |
| 134 for<'b> KOpZ::Adjoint<'b> : GEMV<F, Y>, |
137 for<'b> KOpZ::Adjoint<'b> : GEMV<F, Y>, |
| 135 Y : AXPY<F> + Euclidean<F, Output=Y> + Clone + ClosedAdd, |
138 Y : AXPY<F> + Euclidean<F, Output=Y> + Clone + ClosedAdd, |
| 136 for<'b> &'b Y : Instance<Y>, |
139 for<'b> &'b Y : Instance<Y>, |
| 137 Z : AXPY<F, Owned=Z> + Euclidean<F, Output=Z> + Clone + Norm<F, L2>, |
140 Z : AXPY<F, Owned=Z> + Euclidean<F, Output=Z> + Clone + Norm<F, L2> + Dist<F, L2>, |
| 138 for<'b> &'b Z : Instance<Z>, |
141 for<'b> &'b Z : Instance<Z>, |
| 139 R : Prox<Z, Codomain=F>, |
142 R : Prox<Z, Codomain=F>, |
| 140 H : Conjugable<Y, F, Codomain=F>, |
143 H : Conjugable<Y, F, Codomain=F>, |
| 141 for<'b> H::Conjugate<'b> : Prox<Y>, |
144 for<'b> H::Conjugate<'b> : Prox<Y>, |
| 142 { |
145 { |
| 232 // Run the algorithm |
235 // Run the algorithm |
| 233 for state in iterator.iter_init(|| full_stats(&residual, &μ, &z, ε, stats.clone())) { |
236 for state in iterator.iter_init(|| full_stats(&residual, &μ, &z, ε, stats.clone())) { |
| 234 // Calculate initial transport |
237 // Calculate initial transport |
| 235 let Pair(v, _) = opA.preadjoint().apply(&residual); |
238 let Pair(v, _) = opA.preadjoint().apply(&residual); |
| 236 //opKμ.preadjoint().apply_add(&mut v, y); |
239 //opKμ.preadjoint().apply_add(&mut v, y); |
| 237 let z_base = z.clone(); |
|
| 238 // We want to proceed as in Example 4.12 but with v and v̆ as in §5. |
240 // We want to proceed as in Example 4.12 but with v and v̆ as in §5. |
| 239 // With A(ν, z) = A_μ ν + A_z z, following Example 5.1, we have |
241 // With A(ν, z) = A_μ ν + A_z z, following Example 5.1, we have |
| 240 // P_ℳ[F'(ν, z) + Ξ(ν, z, y)]= A_ν^*[A_ν ν + A_z z] + K_μ ν = A_ν^*A(ν, z) + K_μ ν, |
242 // P_ℳ[F'(ν, z) + Ξ(ν, z, y)]= A_ν^*[A_ν ν + A_z z] + K_μ ν = A_ν^*A(ν, z) + K_μ ν, |
| 241 // where A_ν^* becomes a multiplier. |
243 // where A_ν^* becomes a multiplier. |
| 242 // This is much easier with K_μ = 0, which is the only reason why are enforcing it. |
244 // This is much easier with K_μ = 0, which is the only reason why are enforcing it. |
| 248 v, &config.transport, |
250 v, &config.transport, |
| 249 ); |
251 ); |
| 250 |
252 |
| 251 // Solve finite-dimensional subproblem several times until the dual variable for the |
253 // Solve finite-dimensional subproblem several times until the dual variable for the |
| 252 // regularisation term conforms to the assumptions made for the transport above. |
254 // regularisation term conforms to the assumptions made for the transport above. |
| 253 let (maybe_d, _within_tolerances, Pair(τv̆, τz̆)) = 'adapt_transport: loop { |
255 let (maybe_d, _within_tolerances, mut τv̆, z_new) = 'adapt_transport: loop { |
| 254 // Calculate τv̆ = τA_*(A[μ_transported + μ_transported_base]-b) |
256 // Calculate τv̆ = τA_*(A[μ_transported + μ_transported_base]-b) |
| 255 let residual_μ̆ = calculate_residual2(Pair(&γ1, &z), |
257 let residual_μ̆ = calculate_residual2(Pair(&γ1, &z), |
| 256 Pair(&μ_base_minus_γ0, &zero_z), |
258 Pair(&μ_base_minus_γ0, &zero_z), |
| 257 opA, b); |
259 opA, b); |
| 258 let mut τv̆z = opA.preadjoint().apply(residual_μ̆ * τ); |
260 let Pair(mut τv̆, τz̆) = opA.preadjoint().apply(residual_μ̆ * τ); |
| 259 // opKμ.preadjoint().gemv(&mut τv̆, τ, y, 1.0); |
261 // opKμ.preadjoint().gemv(&mut τv̆, τ, y, 1.0); |
| 260 |
262 |
| 261 // Construct μ^{k+1} by solving finite-dimensional subproblems and insert new spikes. |
263 // Construct μ^{k+1} by solving finite-dimensional subproblems and insert new spikes. |
| 262 let (maybe_d, within_tolerances) = prox_penalty.insert_and_reweigh( |
264 let (maybe_d, within_tolerances) = prox_penalty.insert_and_reweigh( |
| 263 &mut μ, &mut τv̆z.0, &γ1, Some(&μ_base_minus_γ0), |
265 &mut μ, &mut τv̆, &γ1, Some(&μ_base_minus_γ0), |
| 264 τ, ε, &config.insertion, |
266 τ, ε, &config.insertion, |
| 265 ®, &state, &mut stats, |
267 ®, &state, &mut stats, |
| 266 ); |
268 ); |
| 267 |
269 |
| |
270 // Do z variable primal update here to able to estimate B_{v̆^k-v^{k+1}} |
| |
271 let mut z_new = τz̆; |
| |
272 opKz.adjoint().gemv(&mut z_new, -σ_p, &y, -σ_p/τ); |
| |
273 z_new = fnR.prox(σ_p, z_new + &z); |
| |
274 |
| 268 // A posteriori transport adaptation. |
275 // A posteriori transport adaptation. |
| 269 // TODO: this does not properly treat v^{k+1} - v̆^k that depends on z^{k+1}! |
|
| 270 if aposteriori_transport( |
276 if aposteriori_transport( |
| 271 &mut γ1, &mut μ, &mut μ_base_minus_γ0, &μ_base_masses, |
277 &mut γ1, &mut μ, &mut μ_base_minus_γ0, &μ_base_masses, |
| |
278 Some(z_new.dist(&z, L2)), |
| 272 ε, &config.transport |
279 ε, &config.transport |
| 273 ) { |
280 ) { |
| 274 break 'adapt_transport (maybe_d, within_tolerances, τv̆z) |
281 break 'adapt_transport (maybe_d, within_tolerances, τv̆, z_new) |
| 275 } |
282 } |
| 276 }; |
283 }; |
| 277 |
284 |
| 278 stats.untransported_fraction = Some({ |
285 stats.untransported_fraction = Some({ |
| 279 assert_eq!(μ_base_masses.len(), γ1.len()); |
286 assert_eq!(μ_base_masses.len(), γ1.len()); |
| 285 assert_eq!(μ_base_masses.len(), γ1.len()); |
292 assert_eq!(μ_base_masses.len(), γ1.len()); |
| 286 let (a, b) = stats.transport_error.unwrap_or((0.0, 0.0)); |
293 let (a, b) = stats.transport_error.unwrap_or((0.0, 0.0)); |
| 287 (a + μ.dist_matching(&γ1), b + γ1.norm(Radon)) |
294 (a + μ.dist_matching(&γ1), b + γ1.norm(Radon)) |
| 288 }); |
295 }); |
| 289 |
296 |
| 290 // // Merge spikes. |
297 // Merge spikes. |
| 291 // // This expects the prune below to prune γ. |
298 // This crucially expects the merge routine to be stable with respect to spike locations, |
| 292 // // TODO: This may not work correctly in all cases. |
299 // and not to performing any pruning. That is be to done below simultaneously for γ. |
| 293 // let ins = &config.insertion; |
300 let ins = &config.insertion; |
| 294 // if ins.merge_now(&state) { |
301 if ins.merge_now(&state) { |
| 295 // if let SpikeMergingMethod::None = ins.merging { |
302 stats.merged += prox_penalty.merge_spikes_no_fitness( |
| 296 // } else { |
303 &mut μ, &mut τv̆, &γ1, Some(&μ_base_minus_γ0), τ, ε, ins, ®, |
| 297 // stats.merged += μ.merge_spikes(ins.merging, |μ_candidate| { |
304 //Some(|μ̃ : &RNDM<F, N>| calculate_residual(Pair(μ̃, &z), opA, b).norm2_squared_div2()), |
| 298 // let ν = μ_candidate.sub_matching(&γ1)-&μ_base_minus_γ0; |
305 ); |
| 299 // let mut d = &τv̆ + op𝒟.preapply(ν); |
306 } |
| 300 // reg.verify_merge_candidate(&mut d, μ_candidate, τ, ε, ins) |
|
| 301 // }); |
|
| 302 // } |
|
| 303 // } |
|
| 304 |
307 |
| 305 // Prune spikes with zero weight. To maintain correct ordering between μ and γ1, also the |
308 // Prune spikes with zero weight. To maintain correct ordering between μ and γ1, also the |
| 306 // latter needs to be pruned when μ is. |
309 // latter needs to be pruned when μ is. |
| 307 // TODO: This could do with a two-vector Vec::retain to avoid copies. |
310 // TODO: This could do with a two-vector Vec::retain to avoid copies. |
| 308 let μ_new = DiscreteMeasure::from_iter(μ.iter_spikes().filter(|δ| δ.α != F::ZERO).cloned()); |
311 let μ_new = DiscreteMeasure::from_iter(μ.iter_spikes().filter(|δ| δ.α != F::ZERO).cloned()); |
| 311 γ1.prune_by(|_| μ_iter.next().unwrap().α != F::ZERO); |
314 γ1.prune_by(|_| μ_iter.next().unwrap().α != F::ZERO); |
| 312 stats.pruned += μ.len() - μ_new.len(); |
315 stats.pruned += μ.len() - μ_new.len(); |
| 313 μ = μ_new; |
316 μ = μ_new; |
| 314 } |
317 } |
| 315 |
318 |
| 316 // Do z variable primal update |
|
| 317 z.axpy(-σ_p/τ, τz̆, 1.0); // TODO: simplify nasty factors |
|
| 318 opKz.adjoint().gemv(&mut z, -σ_p, &y, 1.0); |
|
| 319 z = fnR.prox(σ_p, z); |
|
| 320 // Do dual update |
319 // Do dual update |
| 321 // opKμ.gemv(&mut y, σ_d*(1.0 + ω), &μ, 1.0); // y = y + σ_d K[(1+ω)(μ,z)^{k+1}] |
320 // opKμ.gemv(&mut y, σ_d*(1.0 + ω), &μ, 1.0); // y = y + σ_d K[(1+ω)(μ,z)^{k+1}] |
| 322 opKz.gemv(&mut y, σ_d*(1.0 + ω), &z, 1.0); |
321 opKz.gemv(&mut y, σ_d*(1.0 + ω), &z_new, 1.0); |
| 323 // opKμ.gemv(&mut y, -σ_d*ω, μ_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b |
322 // opKμ.gemv(&mut y, -σ_d*ω, μ_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b |
| 324 opKz.gemv(&mut y, -σ_d*ω, z_base, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b |
323 opKz.gemv(&mut y, -σ_d*ω, z, 1.0);// y = y + σ_d K[(1+ω)(μ,z)^{k+1} - ω (μ,z)^k]-b |
| 325 y = starH.prox(σ_d, y); |
324 y = starH.prox(σ_d, y); |
| |
325 z = z_new; |
| 326 |
326 |
| 327 // Update residual |
327 // Update residual |
| 328 residual = calculate_residual(Pair(&μ, &z), opA, b); |
328 residual = calculate_residual(Pair(&μ, &z), opA, b); |
| 329 |
329 |
| 330 // Update step length parameters |
330 // Update step length parameters |