Mon, 06 Jan 2025 11:32:57 -0500
Factor fix
| 0 | 1 | /*! |
| 2 | Solver for the point source localisation problem using a forward-backward splitting method. | |
| 3 | ||
| 4 | This corresponds to the manuscript | |
| 5 | ||
|
13
bdc57366d4f5
arXiv links, README beautification
Tuomo Valkonen <tuomov@iki.fi>
parents:
8
diff
changeset
|
6 | * Valkonen T. - _Proximal methods for point source localisation_, |
|
bdc57366d4f5
arXiv links, README beautification
Tuomo Valkonen <tuomov@iki.fi>
parents:
8
diff
changeset
|
7 | [arXiv:2212.02991](https://arxiv.org/abs/2212.02991). |
| 0 | 8 | |
| 35 | 9 | The main routine is [`pointsource_fb_reg`]. |
| 0 | 10 | |
| 11 | ## Problem | |
| 12 | ||
| 13 | <p> | |
| 14 | Our objective is to solve | |
| 15 | $$ | |
| 16 | \min_{μ ∈ ℳ(Ω)}~ F_0(Aμ-b) + α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(μ), | |
| 17 | $$ | |
| 18 | where $F_0(y)=\frac{1}{2}\|y\|_2^2$ and the forward operator $A \in 𝕃(ℳ(Ω); ℝ^n)$. | |
| 19 | </p> | |
| 20 | ||
| 21 | ## Approach | |
| 22 | ||
| 23 | <p> | |
| 24 | As documented in more detail in the paper, on each step we approximately solve | |
| 25 | $$ | |
| 26 | \min_{μ ∈ ℳ(Ω)}~ F(x) + α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(x) + \frac{1}{2}\|μ-μ^k|_𝒟^2, | |
| 27 | $$ | |
| 28 | where $𝒟: 𝕃(ℳ(Ω); C_c(Ω))$ is typically a convolution operator. | |
| 29 | </p> | |
| 30 | ||
| 31 | ## Finite-dimensional subproblems. | |
| 32 | ||
| 33 | With $C$ a projection from [`DiscreteMeasure`] to the weights, and $x^k$ such that $x^k=Cμ^k$, we | |
| 34 | form the discretised linearised inner problem | |
| 35 | <p> | |
| 36 | $$ | |
| 37 | \min_{x ∈ ℝ^n}~ τ\bigl(F(Cx^k) + [C^*∇F(Cx^k)]^⊤(x-x^k) + α {\vec 1}^⊤ x\bigr) | |
| 38 | + δ_{≥ 0}(x) + \frac{1}{2}\|x-x^k\|_{C^*𝒟C}^2, | |
| 39 | $$ | |
| 40 | equivalently | |
| 41 | $$ | |
| 42 | \begin{aligned} | |
| 43 | \min_x~ & τF(Cx^k) - τ[C^*∇F(Cx^k)]^⊤x^k + \frac{1}{2} (x^k)^⊤ C^*𝒟C x^k | |
| 44 | \\ | |
| 45 | & | |
| 46 | - [C^*𝒟C x^k - τC^*∇F(Cx^k)]^⊤ x | |
| 47 | \\ | |
| 48 | & | |
| 49 | + \frac{1}{2} x^⊤ C^*𝒟C x | |
| 50 | + τα {\vec 1}^⊤ x + δ_{≥ 0}(x), | |
| 51 | \end{aligned} | |
| 52 | $$ | |
| 53 | In other words, we obtain the quadratic non-negativity constrained problem | |
| 54 | $$ | |
| 55 | \min_{x ∈ ℝ^n}~ \frac{1}{2} x^⊤ Ã x - b̃^⊤ x + c + τα {\vec 1}^⊤ x + δ_{≥ 0}(x). | |
| 56 | $$ | |
| 57 | where | |
| 58 | $$ | |
| 59 | \begin{aligned} | |
| 60 | Ã & = C^*𝒟C, | |
| 61 | \\ | |
| 62 | g̃ & = C^*𝒟C x^k - τ C^*∇F(Cx^k) | |
| 63 | = C^* 𝒟 μ^k - τ C^*A^*(Aμ^k - b) | |
| 64 | \\ | |
| 65 | c & = τ F(Cx^k) - τ[C^*∇F(Cx^k)]^⊤x^k + \frac{1}{2} (x^k)^⊤ C^*𝒟C x^k | |
| 66 | \\ | |
| 67 | & | |
| 68 | = \frac{τ}{2} \|Aμ^k-b\|^2 - τ[Aμ^k-b]^⊤Aμ^k + \frac{1}{2} \|μ_k\|_{𝒟}^2 | |
| 69 | \\ | |
| 70 | & | |
| 71 | = -\frac{τ}{2} \|Aμ^k-b\|^2 + τ[Aμ^k-b]^⊤ b + \frac{1}{2} \|μ_k\|_{𝒟}^2. | |
| 72 | \end{aligned} | |
| 73 | $$ | |
| 74 | </p> | |
| 75 | ||
| 35 | 76 | We solve this with either SSN or FB as determined by |
| 0 | 77 | [`InnerSettings`] in [`FBGenericConfig::inner`]. |
| 78 | */ | |
| 79 | ||
| 80 | use numeric_literals::replace_float_literals; | |
| 81 | use serde::{Serialize, Deserialize}; | |
| 82 | use colored::Colorize; | |
| 32 | 83 | use nalgebra::DVector; |
| 0 | 84 | |
| 85 | use alg_tools::iterate::{ | |
| 86 | AlgIteratorFactory, | |
| 35 | 87 | AlgIteratorIteration, |
| 88 | AlgIterator, | |
| 0 | 89 | }; |
| 90 | use alg_tools::euclidean::Euclidean; | |
| 35 | 91 | use alg_tools::linops::{Mapping, GEMV}; |
| 0 | 92 | use alg_tools::sets::Cube; |
| 93 | use alg_tools::loc::Loc; | |
| 94 | use alg_tools::bisection_tree::{ | |
| 95 | BTFN, | |
| 96 | PreBTFN, | |
| 97 | Bounds, | |
| 98 | BTNodeLookup, | |
| 99 | BTNode, | |
| 100 | BTSearch, | |
| 101 | P2Minimise, | |
| 102 | SupportGenerator, | |
| 103 | LocalAnalysis, | |
| 32 | 104 | BothGenerators, |
| 0 | 105 | }; |
| 106 | use alg_tools::mapping::RealMapping; | |
| 107 | use alg_tools::nalgebra_support::ToNalgebraRealField; | |
| 35 | 108 | use alg_tools::instance::Instance; |
| 109 | use alg_tools::norms::Linfinity; | |
| 0 | 110 | |
| 111 | use crate::types::*; | |
| 112 | use crate::measures::{ | |
| 113 | DiscreteMeasure, | |
| 35 | 114 | RNDM, |
| 0 | 115 | DeltaMeasure, |
| 35 | 116 | Radon, |
| 0 | 117 | }; |
| 118 | use crate::measures::merging::{ | |
| 119 | SpikeMergingMethod, | |
| 120 | SpikeMerging, | |
| 121 | }; | |
| 35 | 122 | use crate::forward_model::{ |
| 123 | ForwardModel, | |
| 124 | AdjointProductBoundedBy | |
| 125 | }; | |
| 32 | 126 | use crate::seminorms::DiscreteMeasureOp; |
| 0 | 127 | use crate::subproblem::{ |
| 128 | InnerSettings, | |
| 129 | InnerMethod, | |
| 130 | }; | |
| 131 | use crate::tolerance::Tolerance; | |
| 132 | use crate::plot::{ | |
| 133 | SeqPlotter, | |
| 134 | Plotting, | |
| 135 | PlotLookup | |
| 136 | }; | |
| 32 | 137 | use crate::regularisation::RegTerm; |
| 138 | use crate::dataterm::{ | |
| 139 | calculate_residual, | |
| 140 | L2Squared, | |
| 141 | DataTerm, | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
142 | }; |
| 0 | 143 | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
144 | /// Settings for [`pointsource_fb_reg`]. |
| 0 | 145 | #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] |
| 146 | #[serde(default)] | |
| 147 | pub struct FBConfig<F : Float> { | |
| 148 | /// Step length scaling | |
| 149 | pub τ0 : F, | |
| 150 | /// Generic parameters | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
151 | pub generic : FBGenericConfig<F>, |
| 0 | 152 | } |
| 153 | ||
| 35 | 154 | /// Settings for the solution of the stepwise optimality condition. |
| 0 | 155 | #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] |
| 156 | #[serde(default)] | |
| 157 | pub struct FBGenericConfig<F : Float> { | |
| 158 | /// Tolerance for point insertion. | |
| 159 | pub tolerance : Tolerance<F>, | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
160 | |
| 0 | 161 | /// Stop looking for predual maximum (where to isert a new point) below |
| 162 | /// `tolerance` multiplied by this factor. | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
163 | /// |
|
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
164 | /// Not used by [`super::radon_fb`]. |
| 0 | 165 | pub insertion_cutoff_factor : F, |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
166 | |
| 0 | 167 | /// Settings for branch and bound refinement when looking for predual maxima |
| 168 | pub refinement : RefinementSettings<F>, | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
169 | |
| 0 | 170 | /// Maximum insertions within each outer iteration |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
171 | /// |
|
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
172 | /// Not used by [`super::radon_fb`]. |
| 0 | 173 | pub max_insertions : usize, |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
174 | |
| 0 | 175 | /// Pair `(n, m)` for maximum insertions `m` on first `n` iterations. |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
176 | /// |
|
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
177 | /// Not used by [`super::radon_fb`]. |
| 0 | 178 | pub bootstrap_insertions : Option<(usize, usize)>, |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
179 | |
| 0 | 180 | /// Inner method settings |
| 181 | pub inner : InnerSettings<F>, | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
182 | |
| 0 | 183 | /// Spike merging method |
| 184 | pub merging : SpikeMergingMethod<F>, | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
185 | |
| 0 | 186 | /// Tolerance multiplier for merges |
| 187 | pub merge_tolerance_mult : F, | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
188 | |
| 0 | 189 | /// Spike merging method after the last step |
| 190 | pub final_merging : SpikeMergingMethod<F>, | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
191 | |
| 0 | 192 | /// Iterations between merging heuristic tries |
| 193 | pub merge_every : usize, | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
194 | |
| 35 | 195 | // /// Save $μ$ for postprocessing optimisation |
| 196 | // pub postprocessing : bool | |
| 0 | 197 | } |
| 198 | ||
| 199 | #[replace_float_literals(F::cast_from(literal))] | |
| 200 | impl<F : Float> Default for FBConfig<F> { | |
| 201 | fn default() -> Self { | |
| 202 | FBConfig { | |
| 203 | τ0 : 0.99, | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
204 | generic : Default::default(), |
| 0 | 205 | } |
| 206 | } | |
| 207 | } | |
| 208 | ||
| 209 | #[replace_float_literals(F::cast_from(literal))] | |
| 210 | impl<F : Float> Default for FBGenericConfig<F> { | |
| 211 | fn default() -> Self { | |
| 212 | FBGenericConfig { | |
| 213 | tolerance : Default::default(), | |
| 214 | insertion_cutoff_factor : 1.0, | |
| 215 | refinement : Default::default(), | |
| 216 | max_insertions : 100, | |
| 217 | //bootstrap_insertions : None, | |
| 218 | bootstrap_insertions : Some((10, 1)), | |
| 219 | inner : InnerSettings { | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
220 | method : InnerMethod::Default, |
| 0 | 221 | .. Default::default() |
| 222 | }, | |
| 223 | merging : SpikeMergingMethod::None, | |
| 224 | //merging : Default::default(), | |
| 225 | final_merging : Default::default(), | |
| 226 | merge_every : 10, | |
| 227 | merge_tolerance_mult : 2.0, | |
| 35 | 228 | // postprocessing : false, |
| 0 | 229 | } |
| 230 | } | |
| 231 | } | |
| 232 | ||
| 35 | 233 | impl<F : Float> FBGenericConfig<F> { |
| 234 | /// Check if merging should be attempted this iteration | |
| 235 | pub fn merge_now<I : AlgIterator>(&self, state : &AlgIteratorIteration<I>) -> bool { | |
| 236 | state.iteration() % self.merge_every == 0 | |
| 237 | } | |
| 238 | } | |
| 239 | ||
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
240 | /// TODO: document. |
|
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
241 | /// `μ_base + ν_delta` is the base point, where `μ` and `μ_base` are assumed to have the same spike |
|
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
242 | /// locations, while `ν_delta` may have different locations. |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
243 | #[replace_float_literals(F::cast_from(literal))] |
| 32 | 244 | pub(crate) fn insert_and_reweigh< |
| 35 | 245 | 'a, F, GA, 𝒟, BTA, G𝒟, S, K, Reg, I, const N : usize |
| 32 | 246 | >( |
| 35 | 247 | μ : &mut RNDM<F, N>, |
| 248 | τv : &BTFN<F, GA, BTA, N>, | |
| 249 | μ_base : &RNDM<F, N>, | |
| 250 | ν_delta: Option<&RNDM<F, N>>, | |
| 32 | 251 | op𝒟 : &'a 𝒟, |
| 252 | op𝒟norm : F, | |
| 253 | τ : F, | |
| 254 | ε : F, | |
| 255 | config : &FBGenericConfig<F>, | |
| 256 | reg : &Reg, | |
| 35 | 257 | state : &AlgIteratorIteration<I>, |
| 32 | 258 | stats : &mut IterInfo<F, N>, |
| 259 | ) -> (BTFN<F, BothGenerators<GA, G𝒟>, BTA, N>, bool) | |
| 260 | where F : Float + ToNalgebraRealField, | |
| 261 | GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, | |
| 262 | BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, | |
| 263 | G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, | |
| 264 | 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, | |
| 265 | 𝒟::Codomain : RealMapping<F, N>, | |
| 266 | S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
| 267 | K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
| 268 | BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, | |
| 269 | Reg : RegTerm<F, N>, | |
| 35 | 270 | I : AlgIterator { |
| 32 | 271 | |
| 272 | // Maximum insertion count and measure difference calculation depend on insertion style. | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
273 | let (max_insertions, warn_insertions) = match (state.iteration(), config.bootstrap_insertions) { |
| 32 | 274 | (i, Some((l, k))) if i <= l => (k, false), |
| 275 | _ => (config.max_insertions, !state.is_quiet()), | |
| 276 | }; | |
| 277 | ||
| 35 | 278 | let ω0 = match ν_delta { |
| 279 | None => op𝒟.apply(μ_base), | |
| 280 | Some(ν) => op𝒟.apply(μ_base + ν), | |
| 281 | }; | |
| 32 | 282 | |
| 283 | // Add points to support until within error tolerance or maximum insertion count reached. | |
| 284 | let mut count = 0; | |
| 285 | let (within_tolerances, d) = 'insertion: loop { | |
| 286 | if μ.len() > 0 { | |
| 287 | // Form finite-dimensional subproblem. The subproblem references to the original μ^k | |
| 288 | // from the beginning of the iteration are all contained in the immutable c and g. | |
| 35 | 289 | // TODO: observe negation of -τv after switch from minus_τv: finite-dimensional |
| 290 | // problems have not yet been updated to sign change. | |
| 32 | 291 | let à = op𝒟.findim_matrix(μ.iter_locations()); |
| 292 | let g̃ = DVector::from_iterator(μ.len(), | |
| 293 | μ.iter_locations() | |
| 35 | 294 | .map(|ζ| ω0.apply(ζ) - τv.apply(ζ)) |
| 32 | 295 | .map(F::to_nalgebra_mixed)); |
| 296 | let mut x = μ.masses_dvector(); | |
| 297 | ||
| 298 | // The gradient of the forward component of the inner objective is C^*𝒟Cx - g̃. | |
| 299 | // We have |C^*𝒟Cx|_2 = sup_{|z|_2 ≤ 1} ⟨z, C^*𝒟Cx⟩ = sup_{|z|_2 ≤ 1} ⟨Cz|𝒟Cx⟩ | |
| 300 | // ≤ sup_{|z|_2 ≤ 1} |Cz|_ℳ |𝒟Cx|_∞ ≤ sup_{|z|_2 ≤ 1} |Cz|_ℳ |𝒟| |Cx|_ℳ | |
| 301 | // ≤ sup_{|z|_2 ≤ 1} |z|_1 |𝒟| |x|_1 ≤ sup_{|z|_2 ≤ 1} n |z|_2 |𝒟| |x|_2 | |
| 302 | // = n |𝒟| |x|_2, where n is the number of points. Therefore | |
| 303 | let Ã_normest = op𝒟norm * F::cast_from(μ.len()); | |
| 304 | ||
| 305 | // Solve finite-dimensional subproblem. | |
| 306 | stats.inner_iters += reg.solve_findim(&Ã, &g̃, τ, &mut x, Ã_normest, ε, config); | |
| 307 | ||
| 308 | // Update masses of μ based on solution of finite-dimensional subproblem. | |
| 309 | μ.set_masses_dvector(&x); | |
| 310 | } | |
| 311 | ||
| 35 | 312 | // Form d = τv + 𝒟μ - ω0 = τv + 𝒟(μ - μ^k) for checking the proximate optimality |
| 32 | 313 | // conditions in the predual space, and finding new points for insertion, if necessary. |
| 35 | 314 | let mut d = τv + match ν_delta { |
| 315 | None => op𝒟.preapply(μ.sub_matching(μ_base)), | |
| 316 | Some(ν) => op𝒟.preapply(μ.sub_matching(μ_base) - ν) | |
| 317 | }; | |
| 32 | 318 | |
| 319 | // If no merging heuristic is used, let's be more conservative about spike insertion, | |
| 320 | // and skip it after first round. If merging is done, being more greedy about spike | |
| 321 | // insertion also seems to improve performance. | |
| 322 | let skip_by_rough_check = if let SpikeMergingMethod::None = config.merging { | |
| 323 | false | |
| 324 | } else { | |
| 325 | count > 0 | |
| 326 | }; | |
| 327 | ||
| 328 | // Find a spike to insert, if needed | |
| 329 | let (ξ, _v_ξ, in_bounds) = match reg.find_tolerance_violation( | |
| 330 | &mut d, τ, ε, skip_by_rough_check, config | |
| 331 | ) { | |
| 332 | None => break 'insertion (true, d), | |
| 333 | Some(res) => res, | |
| 334 | }; | |
| 335 | ||
| 336 | // Break if maximum insertion count reached | |
| 337 | if count >= max_insertions { | |
| 338 | break 'insertion (in_bounds, d) | |
| 339 | } | |
| 340 | ||
| 341 | // No point in optimising the weight here; the finite-dimensional algorithm is fast. | |
| 342 | *μ += DeltaMeasure { x : ξ, α : 0.0 }; | |
| 343 | count += 1; | |
| 35 | 344 | stats.inserted += 1; |
| 32 | 345 | }; |
| 346 | ||
| 347 | if !within_tolerances && warn_insertions { | |
| 348 | // Complain (but continue) if we failed to get within tolerances | |
| 349 | // by inserting more points. | |
| 350 | let err = format!("Maximum insertions reached without achieving \ | |
| 351 | subproblem solution tolerance"); | |
| 352 | println!("{}", err.red()); | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
353 | } |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
354 | |
| 32 | 355 | (d, within_tolerances) |
| 356 | } | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
357 | |
| 35 | 358 | pub(crate) fn prune_with_stats<F : Float, const N : usize>( |
| 359 | μ : &mut RNDM<F, N>, | |
| 360 | ) -> usize { | |
| 32 | 361 | let n_before_prune = μ.len(); |
| 362 | μ.prune(); | |
| 363 | debug_assert!(μ.len() <= n_before_prune); | |
| 35 | 364 | n_before_prune - μ.len() |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
365 | } |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
366 | |
| 32 | 367 | #[replace_float_literals(F::cast_from(literal))] |
| 368 | pub(crate) fn postprocess< | |
| 369 | F : Float, | |
| 370 | V : Euclidean<F> + Clone, | |
| 35 | 371 | A : GEMV<F, RNDM<F, N>, Codomain = V>, |
| 32 | 372 | D : DataTerm<F, V, N>, |
| 373 | const N : usize | |
| 374 | > ( | |
| 35 | 375 | mut μ : RNDM<F, N>, |
| 32 | 376 | config : &FBGenericConfig<F>, |
| 377 | dataterm : D, | |
| 378 | opA : &A, | |
| 379 | b : &V, | |
| 35 | 380 | ) -> RNDM<F, N> |
| 381 | where | |
| 382 | RNDM<F, N> : SpikeMerging<F>, | |
| 383 | for<'a> &'a RNDM<F, N> : Instance<RNDM<F, N>>, | |
| 384 | { | |
| 32 | 385 | μ.merge_spikes_fitness(config.merging, |
| 386 | |μ̃| dataterm.calculate_fit_op(μ̃, opA, b), | |
| 387 | |&v| v); | |
| 388 | μ.prune(); | |
| 389 | μ | |
| 390 | } | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
391 | |
| 32 | 392 | /// Iteratively solve the pointsource localisation problem using forward-backward splitting. |
| 0 | 393 | /// |
| 32 | 394 | /// The settings in `config` have their [respective documentation](FBConfig). `opA` is the |
| 0 | 395 | /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. |
| 396 | /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution | |
| 397 | /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control | |
| 398 | /// as documented in [`alg_tools::iterate`]. | |
| 399 | /// | |
| 32 | 400 | /// For details on the mathematical formulation, see the [module level](self) documentation. |
| 401 | /// | |
| 0 | 402 | /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of |
| 403 | /// sums of simple functions usign bisection trees, and the related | |
| 404 | /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions | |
| 405 | /// active at a specific points, and to maximise their sums. Through the implementation of the | |
| 406 | /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features | |
| 407 | /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. | |
| 408 | /// | |
| 409 | /// Returns the final iterate. | |
| 410 | #[replace_float_literals(F::cast_from(literal))] | |
| 32 | 411 | pub fn pointsource_fb_reg< |
| 412 | 'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, Reg, const N : usize | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
413 | >( |
| 0 | 414 | opA : &'a A, |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
415 | b : &A::Observable, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
416 | reg : Reg, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
417 | op𝒟 : &'a 𝒟, |
| 32 | 418 | fbconfig : &FBConfig<F>, |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
419 | iterator : I, |
| 32 | 420 | mut plotter : SeqPlotter<F, N>, |
| 35 | 421 | ) -> RNDM<F, N> |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
422 | where F : Float + ToNalgebraRealField, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
423 | I : AlgIteratorFactory<IterInfo<F, N>>, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
424 | for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
425 | GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, |
| 35 | 426 | A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> |
| 427 | + AdjointProductBoundedBy<RNDM<F, N>, 𝒟, FloatType=F>, | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
428 | BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
429 | G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
430 | 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
431 | 𝒟::Codomain : RealMapping<F, N>, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
432 | S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
433 | K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
434 | BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
435 | Cube<F, N>: P2Minimise<Loc<F, N>, F>, |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
436 | PlotLookup : Plotting<N>, |
| 35 | 437 | RNDM<F, N> : SpikeMerging<F>, |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
438 | Reg : RegTerm<F, N> { |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
439 | |
| 32 | 440 | // Set up parameters |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
441 | let config = &fbconfig.generic; |
| 35 | 442 | let op𝒟norm = op𝒟.opnorm_bound(Radon, Linfinity); |
| 443 | let τ = fbconfig.τ0/opA.adjoint_product_bound(&op𝒟).unwrap(); | |
| 32 | 444 | // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled |
| 445 | // by τ compared to the conditional gradient approach. | |
| 446 | let tolerance = config.tolerance * τ * reg.tolerance_scaling(); | |
| 447 | let mut ε = tolerance.initial(); | |
| 448 | ||
| 449 | // Initialise iterates | |
| 450 | let mut μ = DiscreteMeasure::new(); | |
| 451 | let mut residual = -b; | |
| 35 | 452 | |
| 453 | // Statistics | |
| 454 | let full_stats = |residual : &A::Observable, | |
| 455 | μ : &RNDM<F, N>, | |
| 456 | ε, stats| IterInfo { | |
| 457 | value : residual.norm2_squared_div2() + reg.apply(μ), | |
| 458 | n_spikes : μ.len(), | |
| 459 | ε, | |
| 460 | //postprocessing: config.postprocessing.then(|| μ.clone()), | |
| 461 | .. stats | |
| 462 | }; | |
| 32 | 463 | let mut stats = IterInfo::new(); |
| 464 | ||
| 465 | // Run the algorithm | |
| 35 | 466 | for state in iterator.iter_init(|| full_stats(&residual, &μ, ε, stats.clone())) { |
| 32 | 467 | // Calculate smooth part of surrogate model. |
| 35 | 468 | let τv = opA.preadjoint().apply(residual * τ); |
| 32 | 469 | |
| 470 | // Save current base point | |
| 471 | let μ_base = μ.clone(); | |
| 472 | ||
| 473 | // Insert and reweigh | |
| 35 | 474 | let (d, _within_tolerances) = insert_and_reweigh( |
| 475 | &mut μ, &τv, &μ_base, None, | |
| 32 | 476 | op𝒟, op𝒟norm, |
| 477 | τ, ε, | |
| 35 | 478 | config, ®, &state, &mut stats |
| 32 | 479 | ); |
| 480 | ||
| 481 | // Prune and possibly merge spikes | |
| 35 | 482 | if config.merge_now(&state) { |
| 483 | stats.merged += μ.merge_spikes(config.merging, |μ_candidate| { | |
| 484 | let mut d = &τv + op𝒟.preapply(μ_candidate.sub_matching(&μ_base)); | |
| 485 | reg.verify_merge_candidate(&mut d, μ_candidate, τ, ε, &config) | |
| 486 | }); | |
| 487 | } | |
| 488 | stats.pruned += prune_with_stats(&mut μ); | |
| 32 | 489 | |
| 490 | // Update residual | |
| 491 | residual = calculate_residual(&μ, opA, b); | |
| 492 | ||
| 35 | 493 | let iter = state.iteration(); |
| 32 | 494 | stats.this_iters += 1; |
| 495 | ||
| 35 | 496 | // Give statistics if needed |
| 32 | 497 | state.if_verbose(|| { |
| 35 | 498 | plotter.plot_spikes(iter, Some(&d), Some(&τv), &μ); |
| 499 | full_stats(&residual, &μ, ε, std::mem::replace(&mut stats, IterInfo::new())) | |
| 500 | }); | |
| 501 | ||
| 502 | // Update main tolerance for next iteration | |
| 503 | ε = tolerance.update(ε, iter); | |
| 504 | } | |
| 32 | 505 | |
| 506 | postprocess(μ, config, L2Squared, opA, b) | |
| 507 | } | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
508 | |
| 32 | 509 | /// Iteratively solve the pointsource localisation problem using inertial forward-backward splitting. |
| 510 | /// | |
| 511 | /// The settings in `config` have their [respective documentation](FBConfig). `opA` is the | |
| 512 | /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. | |
| 513 | /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution | |
| 514 | /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control | |
| 515 | /// as documented in [`alg_tools::iterate`]. | |
| 516 | /// | |
| 517 | /// For details on the mathematical formulation, see the [module level](self) documentation. | |
| 518 | /// | |
| 519 | /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of | |
| 520 | /// sums of simple functions usign bisection trees, and the related | |
| 521 | /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions | |
| 522 | /// active at a specific points, and to maximise their sums. Through the implementation of the | |
| 523 | /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features | |
| 524 | /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. | |
| 525 | /// | |
| 526 | /// Returns the final iterate. | |
| 527 | #[replace_float_literals(F::cast_from(literal))] | |
| 528 | pub fn pointsource_fista_reg< | |
| 529 | 'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, Reg, const N : usize | |
| 530 | >( | |
| 531 | opA : &'a A, | |
| 532 | b : &A::Observable, | |
| 533 | reg : Reg, | |
| 534 | op𝒟 : &'a 𝒟, | |
| 535 | fbconfig : &FBConfig<F>, | |
| 536 | iterator : I, | |
| 537 | mut plotter : SeqPlotter<F, N>, | |
| 35 | 538 | ) -> RNDM<F, N> |
| 32 | 539 | where F : Float + ToNalgebraRealField, |
| 540 | I : AlgIteratorFactory<IterInfo<F, N>>, | |
| 541 | for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, | |
| 542 | GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, | |
| 35 | 543 | A : ForwardModel<RNDM<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> |
| 544 | + AdjointProductBoundedBy<RNDM<F, N>, 𝒟, FloatType=F>, | |
| 32 | 545 | BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
| 546 | G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, | |
| 547 | 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, | |
| 548 | 𝒟::Codomain : RealMapping<F, N>, | |
| 549 | S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
| 550 | K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
| 551 | BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, | |
| 552 | Cube<F, N>: P2Minimise<Loc<F, N>, F>, | |
| 553 | PlotLookup : Plotting<N>, | |
| 35 | 554 | RNDM<F, N> : SpikeMerging<F>, |
| 32 | 555 | Reg : RegTerm<F, N> { |
| 556 | ||
| 557 | // Set up parameters | |
|
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
558 | let config = &fbconfig.generic; |
| 35 | 559 | let op𝒟norm = op𝒟.opnorm_bound(Radon, Linfinity); |
| 560 | let τ = fbconfig.τ0/opA.adjoint_product_bound(&op𝒟).unwrap(); | |
| 32 | 561 | let mut λ = 1.0; |
| 562 | // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled | |
| 563 | // by τ compared to the conditional gradient approach. | |
| 564 | let tolerance = config.tolerance * τ * reg.tolerance_scaling(); | |
| 565 | let mut ε = tolerance.initial(); | |
| 566 | ||
| 567 | // Initialise iterates | |
| 568 | let mut μ = DiscreteMeasure::new(); | |
| 569 | let mut μ_prev = DiscreteMeasure::new(); | |
| 570 | let mut residual = -b; | |
| 35 | 571 | let mut warned_merging = false; |
| 572 | ||
| 573 | // Statistics | |
| 574 | let full_stats = |ν : &RNDM<F, N>, ε, stats| IterInfo { | |
| 575 | value : L2Squared.calculate_fit_op(ν, opA, b) + reg.apply(ν), | |
| 576 | n_spikes : ν.len(), | |
| 577 | ε, | |
| 578 | // postprocessing: config.postprocessing.then(|| ν.clone()), | |
| 579 | .. stats | |
| 580 | }; | |
| 32 | 581 | let mut stats = IterInfo::new(); |
| 582 | ||
| 583 | // Run the algorithm | |
| 35 | 584 | for state in iterator.iter_init(|| full_stats(&μ, ε, stats.clone())) { |
| 32 | 585 | // Calculate smooth part of surrogate model. |
| 35 | 586 | let τv = opA.preadjoint().apply(residual * τ); |
| 32 | 587 | |
| 588 | // Save current base point | |
| 589 | let μ_base = μ.clone(); | |
| 590 | ||
| 591 | // Insert new spikes and reweigh | |
| 35 | 592 | let (d, _within_tolerances) = insert_and_reweigh( |
| 593 | &mut μ, &τv, &μ_base, None, | |
| 32 | 594 | op𝒟, op𝒟norm, |
| 595 | τ, ε, | |
| 35 | 596 | config, ®, &state, &mut stats |
| 32 | 597 | ); |
| 598 | ||
| 599 | // (Do not) merge spikes. | |
| 35 | 600 | if config.merge_now(&state) { |
| 32 | 601 | match config.merging { |
| 602 | SpikeMergingMethod::None => { }, | |
| 603 | _ => if !warned_merging { | |
| 604 | let err = format!("Merging not supported for μFISTA"); | |
| 605 | println!("{}", err.red()); | |
| 606 | warned_merging = true; | |
| 607 | } | |
| 608 | } | |
| 609 | } | |
| 610 | ||
| 611 | // Update inertial prameters | |
| 612 | let λ_prev = λ; | |
| 613 | λ = 2.0 * λ_prev / ( λ_prev + (4.0 + λ_prev * λ_prev).sqrt() ); | |
| 614 | let θ = λ / λ_prev - λ; | |
| 615 | ||
| 616 | // Perform inertial update on μ. | |
| 617 | // This computes μ ← (1 + θ) * μ - θ * μ_prev, pruning spikes where both μ | |
| 618 | // and μ_prev have zero weight. Since both have weights from the finite-dimensional | |
| 619 | // subproblem with a proximal projection step, this is likely to happen when the | |
| 620 | // spike is not needed. A copy of the pruned μ without artithmetic performed is | |
| 621 | // stored in μ_prev. | |
| 622 | let n_before_prune = μ.len(); | |
| 623 | μ.pruning_sub(1.0 + θ, θ, &mut μ_prev); | |
| 624 | debug_assert!(μ.len() <= n_before_prune); | |
| 625 | stats.pruned += n_before_prune - μ.len(); | |
| 626 | ||
| 627 | // Update residual | |
| 628 | residual = calculate_residual(&μ, opA, b); | |
| 629 | ||
| 35 | 630 | let iter = state.iteration(); |
| 32 | 631 | stats.this_iters += 1; |
| 632 | ||
| 35 | 633 | // Give statistics if needed |
| 32 | 634 | state.if_verbose(|| { |
| 35 | 635 | plotter.plot_spikes(iter, Some(&d), Some(&τv), &μ_prev); |
| 636 | full_stats(&μ_prev, ε, std::mem::replace(&mut stats, IterInfo::new())) | |
| 637 | }); | |
| 638 | ||
| 639 | // Update main tolerance for next iteration | |
| 640 | ε = tolerance.update(ε, iter); | |
| 641 | } | |
| 32 | 642 | |
| 643 | postprocess(μ_prev, config, L2Squared, opA, b) | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
644 | } |