Thu, 29 Aug 2024 00:00:00 -0500
Radon FB + sliding improvements
0 | 1 | //! Implementation of the convolution of two hat functions, |
2 | //! and its convolution with a [`CubeIndicator`]. | |
3 | use numeric_literals::replace_float_literals; | |
4 | use serde::Serialize; | |
5 | use alg_tools::types::*; | |
6 | use alg_tools::norms::*; | |
7 | use alg_tools::loc::Loc; | |
8 | use alg_tools::sets::Cube; | |
9 | use alg_tools::bisection_tree::{ | |
10 | Support, | |
11 | Constant, | |
12 | Bounds, | |
13 | LocalAnalysis, | |
14 | GlobalAnalysis, | |
15 | Bounded, | |
16 | }; | |
32 | 17 | use alg_tools::mapping::{Apply, Differentiable}; |
0 | 18 | use alg_tools::maputil::array_init; |
19 | ||
32 | 20 | use crate::types::Lipschitz; |
0 | 21 | use super::base::*; |
22 | use super::ball_indicator::CubeIndicator; | |
23 | ||
24 | /// Hat convolution kernel. | |
25 | /// | |
26 | /// This struct represents the function | |
27 | /// $$ | |
28 | /// f(x\_1, …, x\_n) = \prod\_{i=1}^n \frac{4}{σ} (h\*h)(x\_i/σ) | |
29 | /// $$ | |
30 | /// where the “hat function” $h(y)= \max(0, 1 - |2y|)$. | |
31 | /// The factor $4/σ$ normalises $∫ f d x = 1$. | |
32 | /// We have | |
33 | /// $$ | |
34 | /// (h*h)(y) = | |
35 | /// \begin{cases} | |
36 | /// \frac{2}{3} (y+1)^3 & -1<y\leq -\frac{1}{2}, \\\\ | |
37 | /// -2 y^3-2 y^2+\frac{1}{3} & -\frac{1}{2}<y\leq 0, \\\\ | |
38 | /// 2 y^3-2 y^2+\frac{1}{3} & 0<y<\frac{1}{2}, \\\\ | |
39 | /// -\frac{2}{3} (y-1)^3 & \frac{1}{2}\leq y<1. \\\\ | |
40 | /// \end{cases} | |
41 | /// $$ | |
42 | #[derive(Copy,Clone,Debug,Serialize,Eq)] | |
43 | pub struct HatConv<S : Constant, const N : usize> { | |
44 | /// The parameter $σ$ of the kernel. | |
45 | pub radius : S, | |
46 | } | |
47 | ||
48 | impl<S1, S2, const N : usize> PartialEq<HatConv<S2, N>> for HatConv<S1, N> | |
49 | where S1 : Constant, | |
50 | S2 : Constant<Type=S1::Type> { | |
51 | fn eq(&self, other : &HatConv<S2, N>) -> bool { | |
52 | self.radius.value() == other.radius.value() | |
53 | } | |
54 | } | |
55 | ||
56 | impl<'a, S, const N : usize> HatConv<S, N> where S : Constant { | |
57 | /// Returns the $σ$ parameter of the kernel. | |
58 | #[inline] | |
59 | pub fn radius(&self) -> S::Type { | |
60 | self.radius.value() | |
61 | } | |
62 | } | |
63 | ||
64 | impl<'a, S, const N : usize> Apply<&'a Loc<S::Type, N>> for HatConv<S, N> | |
65 | where S : Constant { | |
66 | type Output = S::Type; | |
67 | #[inline] | |
68 | fn apply(&self, y : &'a Loc<S::Type, N>) -> Self::Output { | |
69 | let σ = self.radius(); | |
70 | y.product_map(|x| { | |
71 | self.value_1d_σ1(x / σ) / σ | |
72 | }) | |
73 | } | |
74 | } | |
75 | ||
76 | impl<'a, S, const N : usize> Apply<Loc<S::Type, N>> for HatConv<S, N> | |
77 | where S : Constant { | |
78 | type Output = S::Type; | |
79 | #[inline] | |
80 | fn apply(&self, y : Loc<S::Type, N>) -> Self::Output { | |
81 | self.apply(&y) | |
82 | } | |
83 | } | |
84 | ||
32 | 85 | #[replace_float_literals(S::Type::cast_from(literal))] |
86 | impl<S, const N : usize> Lipschitz<L1> for HatConv<S, N> | |
87 | where S : Constant { | |
88 | type FloatType = S::Type; | |
89 | #[inline] | |
90 | fn lipschitz_factor(&self, L1 : L1) -> Option<Self::FloatType> { | |
91 | // For any ψ_i, we have | |
92 | // ∏_{i=1}^N ψ_i(x_i) - ∏_{i=1}^N ψ_i(y_i) | |
93 | // = [ψ_1(x_1)-ψ_1(y_1)] ∏_{i=2}^N ψ_i(x_i) | |
94 | // + ψ_1(y_1)[ ∏_{i=2}^N ψ_i(x_i) - ∏_{i=2}^N ψ_i(y_i)] | |
95 | // = ∑_{j=1}^N [ψ_j(x_j)-ψ_j(y_j)]∏_{i > j} ψ_i(x_i) ∏_{i < j} ψ_i(y_i) | |
96 | // Thus | |
97 | // |∏_{i=1}^N ψ_i(x_i) - ∏_{i=1}^N ψ_i(y_i)| | |
98 | // ≤ ∑_{j=1}^N |ψ_j(x_j)-ψ_j(y_j)| ∏_{j ≠ i} \max_i |ψ_i| | |
99 | let σ = self.radius(); | |
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
100 | let l1d = self.lipschitz_1d_σ1() / (σ*σ); |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
101 | let m1d = self.value_1d_σ1(0.0) / σ; |
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
102 | Some(l1d * m1d.powi(N as i32 - 1)) |
32 | 103 | } |
104 | } | |
105 | ||
106 | impl<S, const N : usize> Lipschitz<L2> for HatConv<S, N> | |
107 | where S : Constant { | |
108 | type FloatType = S::Type; | |
109 | #[inline] | |
110 | fn lipschitz_factor(&self, L2 : L2) -> Option<Self::FloatType> { | |
111 | self.lipschitz_factor(L1).map(|l1| l1 * <S::Type>::cast_from(N).sqrt()) | |
112 | } | |
113 | } | |
114 | ||
115 | ||
116 | impl<'a, S, const N : usize> Differentiable<&'a Loc<S::Type, N>> for HatConv<S, N> | |
117 | where S : Constant { | |
118 | type Output = Loc<S::Type, N>; | |
119 | #[inline] | |
120 | fn differential(&self, y : &'a Loc<S::Type, N>) -> Self::Output { | |
121 | let σ = self.radius(); | |
122 | let σ2 = σ * σ; | |
123 | let vs = y.map(|x| { | |
124 | self.value_1d_σ1(x / σ) / σ | |
125 | }); | |
126 | product_differential(y, &vs, |x| { | |
127 | self.diff_1d_σ1(x / σ) / σ2 | |
128 | }) | |
129 | } | |
130 | } | |
131 | ||
132 | impl<'a, S, const N : usize> Differentiable<Loc<S::Type, N>> for HatConv<S, N> | |
133 | where S : Constant { | |
134 | type Output = Loc<S::Type, N>; | |
135 | #[inline] | |
136 | fn differential(&self, y : Loc<S::Type, N>) -> Self::Output { | |
137 | self.differential(&y) | |
138 | } | |
139 | } | |
0 | 140 | |
141 | #[replace_float_literals(S::Type::cast_from(literal))] | |
142 | impl<'a, F : Float, S, const N : usize> HatConv<S, N> | |
143 | where S : Constant<Type=F> { | |
144 | /// Computes the value of the kernel for $n=1$ with $σ=1$. | |
145 | #[inline] | |
146 | fn value_1d_σ1(&self, x : F) -> F { | |
147 | let y = x.abs(); | |
148 | if y >= 1.0 { | |
149 | 0.0 | |
150 | } else if y > 0.5 { | |
151 | - (8.0/3.0) * (y - 1.0).powi(3) | |
152 | } else /* 0 ≤ y ≤ 0.5 */ { | |
153 | (4.0/3.0) + 8.0 * y * y * (y - 1.0) | |
154 | } | |
155 | } | |
32 | 156 | |
157 | /// Computes the differential of the kernel for $n=1$ with $σ=1$. | |
158 | #[inline] | |
159 | fn diff_1d_σ1(&self, x : F) -> F { | |
160 | let y = x.abs(); | |
161 | if y >= 1.0 { | |
162 | 0.0 | |
163 | } else if y > 0.5 { | |
164 | - 8.0 * (y - 1.0).powi(2) | |
165 | } else /* 0 ≤ y ≤ 0.5 */ { | |
166 | (24.0 * y - 16.0) * y | |
167 | } | |
168 | } | |
169 | ||
170 | /// Computes the Lipschitz factor of the kernel for $n=1$ with $σ=1$. | |
171 | #[inline] | |
172 | fn lipschitz_1d_σ1(&self) -> F { | |
173 | // Maximal absolute differential achieved at ±0.5 by diff_1d_σ1 analysis | |
174 | 2.0 | |
175 | } | |
0 | 176 | } |
177 | ||
178 | impl<'a, S, const N : usize> Support<S::Type, N> for HatConv<S, N> | |
179 | where S : Constant { | |
180 | #[inline] | |
181 | fn support_hint(&self) -> Cube<S::Type,N> { | |
182 | let σ = self.radius(); | |
183 | array_init(|| [-σ, σ]).into() | |
184 | } | |
185 | ||
186 | #[inline] | |
187 | fn in_support(&self, y : &Loc<S::Type,N>) -> bool { | |
188 | let σ = self.radius(); | |
189 | y.iter().all(|x| x.abs() <= σ) | |
190 | } | |
191 | ||
192 | #[inline] | |
193 | fn bisection_hint(&self, cube : &Cube<S::Type, N>) -> [Option<S::Type>; N] { | |
194 | let σ = self.radius(); | |
195 | cube.map(|c, d| symmetric_peak_hint(σ, c, d)) | |
196 | } | |
197 | } | |
198 | ||
199 | #[replace_float_literals(S::Type::cast_from(literal))] | |
200 | impl<S, const N : usize> GlobalAnalysis<S::Type, Bounds<S::Type>> for HatConv<S, N> | |
201 | where S : Constant { | |
202 | #[inline] | |
203 | fn global_analysis(&self) -> Bounds<S::Type> { | |
204 | Bounds(0.0, self.apply(Loc::ORIGIN)) | |
205 | } | |
206 | } | |
207 | ||
208 | impl<S, const N : usize> LocalAnalysis<S::Type, Bounds<S::Type>, N> for HatConv<S, N> | |
209 | where S : Constant { | |
210 | #[inline] | |
211 | fn local_analysis(&self, cube : &Cube<S::Type, N>) -> Bounds<S::Type> { | |
212 | // The function is maximised/minimised where the 2-norm is minimised/maximised. | |
213 | let lower = self.apply(cube.maxnorm_point()); | |
214 | let upper = self.apply(cube.minnorm_point()); | |
215 | Bounds(lower, upper) | |
216 | } | |
217 | } | |
218 | ||
219 | #[replace_float_literals(C::Type::cast_from(literal))] | |
220 | impl<'a, C : Constant, const N : usize> Norm<C::Type, L1> | |
221 | for HatConv<C, N> { | |
222 | #[inline] | |
223 | fn norm(&self, _ : L1) -> C::Type { | |
224 | 1.0 | |
225 | } | |
226 | } | |
227 | ||
228 | #[replace_float_literals(C::Type::cast_from(literal))] | |
229 | impl<'a, C : Constant, const N : usize> Norm<C::Type, Linfinity> | |
230 | for HatConv<C, N> { | |
231 | #[inline] | |
232 | fn norm(&self, _ : Linfinity) -> C::Type { | |
233 | self.bounds().upper() | |
234 | } | |
235 | } | |
236 | ||
237 | #[replace_float_literals(F::cast_from(literal))] | |
238 | impl<'a, F : Float, R, C, const N : usize> Apply<&'a Loc<F, N>> | |
239 | for Convolution<CubeIndicator<R, N>, HatConv<C, N>> | |
240 | where R : Constant<Type=F>, | |
241 | C : Constant<Type=F> { | |
242 | ||
243 | type Output = F; | |
244 | ||
245 | #[inline] | |
246 | fn apply(&self, y : &'a Loc<F, N>) -> F { | |
247 | let Convolution(ref ind, ref hatconv) = self; | |
248 | let β = ind.r.value(); | |
249 | let σ = hatconv.radius(); | |
250 | ||
251 | // This is just a product of one-dimensional versions | |
252 | y.product_map(|x| { | |
253 | // With $u_σ(x) = u_1(x/σ)/σ$ the normalised hat convolution | |
254 | // we have | |
255 | // $$ | |
256 | // [χ_{-β,β} * u_σ](x) | |
257 | // = ∫_{x-β}^{x+β} u_σ(z) d z | |
258 | // = (1/σ)∫_{x-β}^{x+β} u_1(z/σ) d z | |
259 | // = ∫_{(x-β)/σ}^{(x+β)/σ} u_1(z) d z | |
260 | // = [χ_{-β/σ, β/σ} * u_1](x/σ) | |
261 | // $$ | |
262 | self.value_1d_σ1(x / σ, β / σ) | |
263 | }) | |
264 | } | |
265 | } | |
266 | ||
267 | impl<'a, F : Float, R, C, const N : usize> Apply<Loc<F, N>> | |
268 | for Convolution<CubeIndicator<R, N>, HatConv<C, N>> | |
269 | where R : Constant<Type=F>, | |
270 | C : Constant<Type=F> { | |
271 | ||
272 | type Output = F; | |
273 | ||
274 | #[inline] | |
275 | fn apply(&self, y : Loc<F, N>) -> F { | |
276 | self.apply(&y) | |
277 | } | |
278 | } | |
279 | ||
32 | 280 | #[replace_float_literals(F::cast_from(literal))] |
281 | impl<'a, F : Float, R, C, const N : usize> Differentiable<&'a Loc<F, N>> | |
282 | for Convolution<CubeIndicator<R, N>, HatConv<C, N>> | |
283 | where R : Constant<Type=F>, | |
284 | C : Constant<Type=F> { | |
285 | ||
286 | type Output = Loc<F, N>; | |
287 | ||
288 | #[inline] | |
289 | fn differential(&self, y : &'a Loc<F, N>) -> Loc<F, N> { | |
290 | let Convolution(ref ind, ref hatconv) = self; | |
291 | let β = ind.r.value(); | |
292 | let σ = hatconv.radius(); | |
293 | let σ2 = σ * σ; | |
294 | ||
295 | let vs = y.map(|x| { | |
296 | self.value_1d_σ1(x / σ, β / σ) | |
297 | }); | |
298 | product_differential(y, &vs, |x| { | |
299 | self.diff_1d_σ1(x / σ, β / σ) / σ2 | |
300 | }) | |
301 | } | |
302 | } | |
303 | ||
304 | impl<'a, F : Float, R, C, const N : usize> Differentiable<Loc<F, N>> | |
305 | for Convolution<CubeIndicator<R, N>, HatConv<C, N>> | |
306 | where R : Constant<Type=F>, | |
307 | C : Constant<Type=F> { | |
308 | ||
309 | type Output = Loc<F, N>; | |
310 | ||
311 | #[inline] | |
312 | fn differential(&self, y : Loc<F, N>) -> Loc<F, N> { | |
313 | self.differential(&y) | |
314 | } | |
315 | } | |
316 | ||
317 | /// Integrate $f$, whose support is $[c, d]$, on $[a, b]$. | |
318 | /// If $b > d$, add $g()$ to the result. | |
319 | #[inline] | |
320 | #[replace_float_literals(F::cast_from(literal))] | |
321 | fn i<F: Float>(a : F, b : F, c : F, d : F, f : impl Fn(F) -> F, | |
322 | g : impl Fn() -> F) -> F { | |
323 | if b < c { | |
324 | 0.0 | |
325 | } else if b <= d { | |
326 | if a <= c { | |
327 | f(b) - f(c) | |
328 | } else { | |
329 | f(b) - f(a) | |
330 | } | |
331 | } else /* b > d */ { | |
332 | g() + if a <= c { | |
333 | f(d) - f(c) | |
334 | } else if a < d { | |
335 | f(d) - f(a) | |
336 | } else { | |
337 | 0.0 | |
338 | } | |
339 | } | |
340 | } | |
0 | 341 | |
342 | #[replace_float_literals(F::cast_from(literal))] | |
343 | impl<F : Float, C, R, const N : usize> Convolution<CubeIndicator<R, N>, HatConv<C, N>> | |
344 | where R : Constant<Type=F>, | |
345 | C : Constant<Type=F> { | |
32 | 346 | |
347 | /// Calculates the value of the 1D hat convolution further convolved by a interval indicator. | |
348 | /// As both functions are piecewise polynomials, this is implemented by explicit integral over | |
349 | /// all subintervals of polynomiality of the cube indicator, using easily formed | |
350 | /// antiderivatives. | |
0 | 351 | #[inline] |
352 | pub fn value_1d_σ1(&self, x : F, β : F) -> F { | |
353 | // The integration interval | |
354 | let a = x - β; | |
355 | let b = x + β; | |
356 | ||
357 | #[inline] | |
358 | fn pow4<F : Float>(x : F) -> F { | |
359 | let y = x * x; | |
360 | y * y | |
361 | } | |
362 | ||
363 | // Observe the factor 1/6 at the front from the antiderivatives below. | |
364 | // The factor 4 is from normalisation of the original function. | |
365 | (4.0/6.0) * i(a, b, -1.0, -0.5, | |
32 | 366 | // (2/3) (y+1)^3 on -1 < y ≤ -1/2 |
0 | 367 | // The antiderivative is (2/12)(y+1)^4 = (1/6)(y+1)^4 |
368 | |y| pow4(y+1.0), | |
369 | || i(a, b, -0.5, 0.0, | |
370 | // -2 y^3 - 2 y^2 + 1/3 on -1/2 < y ≤ 0 | |
371 | // The antiderivative is -1/2 y^4 - 2/3 y^3 + 1/3 y | |
372 | |y| y*(-y*y*(y*3.0 + 4.0) + 2.0), | |
373 | || i(a, b, 0.0, 0.5, | |
374 | // 2 y^3 - 2 y^2 + 1/3 on 0 < y < 1/2 | |
375 | // The antiderivative is 1/2 y^4 - 2/3 y^3 + 1/3 y | |
376 | |y| y*(y*y*(y*3.0 - 4.0) + 2.0), | |
377 | || i(a, b, 0.5, 1.0, | |
378 | // -(2/3) (y-1)^3 on 1/2 < y ≤ 1 | |
379 | // The antiderivative is -(2/12)(y-1)^4 = -(1/6)(y-1)^4 | |
380 | |y| -pow4(y-1.0), | |
381 | || 0.0 | |
382 | ) | |
383 | ) | |
384 | ) | |
385 | ) | |
386 | } | |
32 | 387 | |
388 | /// Calculates the derivative of the 1D hat convolution further convolved by a interval | |
389 | /// indicator. The implementation is similar to [`Self::value_1d_σ1`], using the fact that | |
390 | /// $(θ * ψ)' = θ * ψ'$. | |
391 | #[inline] | |
392 | pub fn diff_1d_σ1(&self, x : F, β : F) -> F { | |
393 | // The integration interval | |
394 | let a = x - β; | |
395 | let b = x + β; | |
396 | ||
397 | // The factor 4 is from normalisation of the original function. | |
398 | 4.0 * i(a, b, -1.0, -0.5, | |
399 | // (2/3) (y+1)^3 on -1 < y ≤ -1/2 | |
400 | |y| (2.0/3.0) * (y + 1.0).powi(3), | |
401 | || i(a, b, -0.5, 0.0, | |
402 | // -2 y^3 - 2 y^2 + 1/3 on -1/2 < y ≤ 0 | |
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
32
diff
changeset
|
403 | |y| -2.0*(y + 1.0) * y * y + (1.0/3.0), |
32 | 404 | || i(a, b, 0.0, 0.5, |
405 | // 2 y^3 - 2 y^2 + 1/3 on 0 < y < 1/2 | |
406 | |y| 2.0*(y - 1.0) * y * y + (1.0/3.0), | |
407 | || i(a, b, 0.5, 1.0, | |
408 | // -(2/3) (y-1)^3 on 1/2 < y ≤ 1 | |
409 | |y| -(2.0/3.0) * (y - 1.0).powi(3), | |
410 | || 0.0 | |
411 | ) | |
412 | ) | |
413 | ) | |
414 | ) | |
415 | } | |
0 | 416 | } |
417 | ||
418 | impl<F : Float, R, C, const N : usize> | |
419 | Convolution<CubeIndicator<R, N>, HatConv<C, N>> | |
420 | where R : Constant<Type=F>, | |
421 | C : Constant<Type=F> { | |
422 | ||
423 | #[inline] | |
424 | fn get_r(&self) -> F { | |
425 | let Convolution(ref ind, ref hatconv) = self; | |
426 | ind.r.value() + hatconv.radius() | |
427 | } | |
428 | } | |
429 | ||
430 | impl<F : Float, R, C, const N : usize> Support<F, N> | |
431 | for Convolution<CubeIndicator<R, N>, HatConv<C, N>> | |
432 | where R : Constant<Type=F>, | |
433 | C : Constant<Type=F> { | |
434 | ||
435 | #[inline] | |
436 | fn support_hint(&self) -> Cube<F, N> { | |
437 | let r = self.get_r(); | |
438 | array_init(|| [-r, r]).into() | |
439 | } | |
440 | ||
441 | #[inline] | |
442 | fn in_support(&self, y : &Loc<F, N>) -> bool { | |
443 | let r = self.get_r(); | |
444 | y.iter().all(|x| x.abs() <= r) | |
445 | } | |
446 | ||
447 | #[inline] | |
448 | fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { | |
449 | // It is not difficult to verify that [`HatConv`] is C^2. | |
450 | // Therefore, so is [`Convolution<CubeIndicator<R, N>, HatConv<C, N>>`] so that a finer | |
451 | // subdivision for the hint than this is not particularly useful. | |
452 | let r = self.get_r(); | |
453 | cube.map(|c, d| symmetric_peak_hint(r, c, d)) | |
454 | } | |
455 | } | |
456 | ||
457 | impl<F : Float, R, C, const N : usize> GlobalAnalysis<F, Bounds<F>> | |
458 | for Convolution<CubeIndicator<R, N>, HatConv<C, N>> | |
459 | where R : Constant<Type=F>, | |
460 | C : Constant<Type=F> { | |
461 | #[inline] | |
462 | fn global_analysis(&self) -> Bounds<F> { | |
463 | Bounds(F::ZERO, self.apply(Loc::ORIGIN)) | |
464 | } | |
465 | } | |
466 | ||
467 | impl<F : Float, R, C, const N : usize> LocalAnalysis<F, Bounds<F>, N> | |
468 | for Convolution<CubeIndicator<R, N>, HatConv<C, N>> | |
469 | where R : Constant<Type=F>, | |
470 | C : Constant<Type=F> { | |
471 | #[inline] | |
472 | fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { | |
473 | // The function is maximised/minimised where the absolute value is minimised/maximised. | |
474 | let lower = self.apply(cube.maxnorm_point()); | |
475 | let upper = self.apply(cube.minnorm_point()); | |
476 | //assert!(upper >= lower); | |
477 | if upper < lower { | |
478 | let Convolution(ref ind, ref hatconv) = self; | |
479 | let β = ind.r.value(); | |
480 | let σ = hatconv.radius(); | |
481 | eprintln!("WARNING: Hat convolution {β} {σ} upper bound {upper} < lower bound {lower} on {cube:?} with min-norm point {:?} and max-norm point {:?}", cube.minnorm_point(), cube.maxnorm_point()); | |
482 | Bounds(upper, lower) | |
483 | } else { | |
484 | Bounds(lower, upper) | |
485 | } | |
486 | } | |
487 | } | |
488 | ||
489 | ||
490 | /// This [`BoundedBy`] implementation bounds $u * u$ by $(ψ * ψ) u$ for $u$ a hat convolution and | |
491 | /// $ψ = χ_{[-a,a]^N}$ for some $a>0$. | |
492 | /// | |
493 | /// This is based on the general formula for bounding $(uχ) * (uχ)$ by $(ψ * ψ) u$, | |
494 | /// where we take $ψ = χ_{[-a,a]^N}$ and $χ = χ_{[-σ,σ]^N}$ for $σ$ the width of the hat | |
495 | /// convolution. | |
496 | #[replace_float_literals(F::cast_from(literal))] | |
497 | impl<F, C, S, const N : usize> | |
498 | BoundedBy<F, SupportProductFirst<AutoConvolution<CubeIndicator<S, N>>, HatConv<C, N>>> | |
499 | for AutoConvolution<HatConv<C, N>> | |
500 | where F : Float, | |
501 | C : Constant<Type=F>, | |
502 | S : Constant<Type=F> { | |
503 | ||
504 | fn bounding_factor( | |
505 | &self, | |
506 | kernel : &SupportProductFirst<AutoConvolution<CubeIndicator<S, N>>, HatConv<C, N>> | |
507 | ) -> Option<F> { | |
508 | // We use the comparison $ℱ[𝒜(ψ v)] ≤ L_1 ℱ[𝒜(ψ)u] ⟺ I_{v̂} v̂ ≤ L_1 û$ with | |
509 | // $ψ = χ_{[-w, w]}$ satisfying $supp v ⊂ [-w, w]$, i.e. $w ≥ σ$. Here $v̂ = ℱ[v]$ and | |
510 | // $I_{v̂} = ∫ v̂ d ξ. For this relationship to be valid, we need $v̂ ≥ 0$, which is guaranteed | |
511 | // by $v̂ = u_σ$ being an autoconvolution. With $u = v$, therefore $L_1 = I_v̂ = ∫ u_σ(ξ) d ξ$. | |
512 | let SupportProductFirst(AutoConvolution(ref ind), hatconv2) = kernel; | |
513 | let σ = self.0.radius(); | |
514 | let a = ind.r.value(); | |
515 | let bounding_1d = 4.0 / (3.0 * σ); | |
516 | ||
517 | // Check that the cutting indicator of the comparison | |
518 | // `SupportProductFirst<AutoConvolution<CubeIndicator<S, N>>, HatConv<C, N>>` | |
519 | // is wide enough, and that the hat convolution has the same radius as ours. | |
520 | if σ <= a && hatconv2 == &self.0 { | |
521 | Some(bounding_1d.powi(N as i32)) | |
522 | } else { | |
523 | // We cannot compare | |
524 | None | |
525 | } | |
526 | } | |
527 | } | |
528 | ||
529 | /// This [`BoundedBy`] implementation bounds $u * u$ by $u$ for $u$ a hat convolution. | |
530 | /// | |
531 | /// This is based on Example 3.3 in the manuscript. | |
532 | #[replace_float_literals(F::cast_from(literal))] | |
533 | impl<F, C, const N : usize> | |
534 | BoundedBy<F, HatConv<C, N>> | |
535 | for AutoConvolution<HatConv<C, N>> | |
536 | where F : Float, | |
537 | C : Constant<Type=F> { | |
538 | ||
539 | /// Returns an estimate of the factor $L_1$. | |
540 | /// | |
541 | /// Returns `None` if `kernel` does not have the same width as hat convolution that `self` | |
542 | /// is based on. | |
543 | fn bounding_factor( | |
544 | &self, | |
545 | kernel : &HatConv<C, N> | |
546 | ) -> Option<F> { | |
547 | if kernel == &self.0 { | |
548 | Some(1.0) | |
549 | } else { | |
550 | // We cannot compare | |
551 | None | |
552 | } | |
553 | } | |
554 | } | |
555 | ||
556 | #[cfg(test)] | |
557 | mod tests { | |
558 | use alg_tools::lingrid::linspace; | |
559 | use alg_tools::mapping::Apply; | |
560 | use alg_tools::norms::Linfinity; | |
561 | use alg_tools::loc::Loc; | |
562 | use crate::kernels::{BallIndicator, CubeIndicator, Convolution}; | |
563 | use super::HatConv; | |
564 | ||
565 | /// Tests numerically that [`HatConv<f64, 1>`] is monotone. | |
566 | #[test] | |
567 | fn hatconv_monotonicity() { | |
568 | let grid = linspace(0.0, 1.0, 100000); | |
569 | let hatconv : HatConv<f64, 1> = HatConv{ radius : 1.0 }; | |
570 | let mut vals = grid.into_iter().map(|t| hatconv.apply(Loc::from(t))); | |
571 | let first = vals.next().unwrap(); | |
572 | let monotone = vals.fold((first, true), |(prev, ok), t| (prev, ok && prev >= t)).1; | |
573 | assert!(monotone); | |
574 | } | |
575 | ||
576 | /// Tests numerically that [`Convolution<CubeIndicator<f64, 1>, HatConv<f64, 1>>`] is monotone. | |
577 | #[test] | |
578 | fn convolution_cubeind_hatconv_monotonicity() { | |
579 | let grid = linspace(-2.0, 0.0, 100000); | |
580 | let hatconv : Convolution<CubeIndicator<f64, 1>, HatConv<f64, 1>> | |
581 | = Convolution(BallIndicator { r : 0.5, exponent : Linfinity }, | |
582 | HatConv{ radius : 1.0 } ); | |
583 | let mut vals = grid.into_iter().map(|t| hatconv.apply(Loc::from(t))); | |
584 | let first = vals.next().unwrap(); | |
585 | let monotone = vals.fold((first, true), |(prev, ok), t| (prev, ok && prev <= t)).1; | |
586 | assert!(monotone); | |
587 | ||
588 | let grid = linspace(0.0, 2.0, 100000); | |
589 | let hatconv : Convolution<CubeIndicator<f64, 1>, HatConv<f64, 1>> | |
590 | = Convolution(BallIndicator { r : 0.5, exponent : Linfinity }, | |
591 | HatConv{ radius : 1.0 } ); | |
592 | let mut vals = grid.into_iter().map(|t| hatconv.apply(Loc::from(t))); | |
593 | let first = vals.next().unwrap(); | |
594 | let monotone = vals.fold((first, true), |(prev, ok), t| (prev, ok && prev >= t)).1; | |
595 | assert!(monotone); | |
596 | } | |
597 | } |