Tue, 06 Dec 2022 15:02:49 +0200
Oops, some μ were x in the README.
| 0 | 1 | //! Implementation of the hat function |
| 2 | ||
| 3 | use numeric_literals::replace_float_literals; | |
| 4 | use serde::Serialize; | |
| 5 | use alg_tools::types::*; | |
| 6 | use alg_tools::norms::*; | |
| 7 | use alg_tools::loc::Loc; | |
| 8 | use alg_tools::sets::Cube; | |
| 9 | use alg_tools::bisection_tree::{ | |
| 10 | Support, | |
| 11 | Constant, | |
| 12 | Bounds, | |
| 13 | LocalAnalysis, | |
| 14 | GlobalAnalysis, | |
| 15 | Bounded, | |
| 16 | }; | |
| 17 | use alg_tools::mapping::Apply; | |
| 18 | use alg_tools::maputil::{array_init}; | |
| 19 | ||
| 20 | /// Representation of the hat function $f(x)=1-\\|x\\|\_1/ε$ of `width` $ε$ on $ℝ^N$. | |
| 21 | #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] | |
| 22 | pub struct Hat<C : Constant, const N : usize> { | |
| 23 | /// The parameter $ε>0$. | |
| 24 | pub width : C, | |
| 25 | } | |
| 26 | ||
| 27 | #[replace_float_literals(C::Type::cast_from(literal))] | |
| 28 | impl<'a, C : Constant, const N : usize> Apply<&'a Loc<C::Type, N>> for Hat<C, N> { | |
| 29 | type Output = C::Type; | |
| 30 | #[inline] | |
| 31 | fn apply(&self, x : &'a Loc<C::Type, N>) -> Self::Output { | |
| 32 | let ε = self.width.value(); | |
| 33 | 0.0.max(1.0-x.norm(L1)/ε) | |
| 34 | } | |
| 35 | } | |
| 36 | ||
| 37 | #[replace_float_literals(C::Type::cast_from(literal))] | |
| 38 | impl<C : Constant, const N : usize> Apply<Loc<C::Type, N>> for Hat<C, N> { | |
| 39 | type Output = C::Type; | |
| 40 | #[inline] | |
| 41 | fn apply(&self, x : Loc<C::Type, N>) -> Self::Output { | |
| 42 | self.apply(&x) | |
| 43 | } | |
| 44 | } | |
| 45 | ||
| 46 | ||
| 47 | #[replace_float_literals(C::Type::cast_from(literal))] | |
| 48 | impl<'a, C : Constant, const N : usize> Support<C::Type, N> for Hat<C, N> { | |
| 49 | #[inline] | |
| 50 | fn support_hint(&self) -> Cube<C::Type,N> { | |
| 51 | let ε = self.width.value(); | |
| 52 | array_init(|| [-ε, ε]).into() | |
| 53 | } | |
| 54 | ||
| 55 | #[inline] | |
| 56 | fn in_support(&self, x : &Loc<C::Type,N>) -> bool { | |
| 57 | x.norm(L1) < self.width.value() | |
| 58 | } | |
| 59 | ||
| 60 | /*fn fully_in_support(&self, _cube : &Cube<C::Type,N>) -> bool { | |
| 61 | todo!("Not implemented, but not used at the moment") | |
| 62 | }*/ | |
| 63 | ||
| 64 | #[inline] | |
| 65 | fn bisection_hint(&self, cube : &Cube<C::Type,N>) -> [Option<C::Type>; N] { | |
| 66 | let ε = self.width.value(); | |
| 67 | cube.map(|a, b| { | |
| 68 | if a < 1.0 { | |
| 69 | if 1.0 < b { | |
| 70 | Some(1.0) | |
| 71 | } else { | |
| 72 | if a < -ε { | |
| 73 | if b > -ε { Some(-ε) } else { None } | |
| 74 | } else { | |
| 75 | None | |
| 76 | } | |
| 77 | } | |
| 78 | } else { | |
| 79 | if b > ε { Some(ε) } else { None } | |
| 80 | } | |
| 81 | }); | |
| 82 | todo!("also diagonals") | |
| 83 | } | |
| 84 | } | |
| 85 | ||
| 86 | ||
| 87 | #[replace_float_literals(C::Type::cast_from(literal))] | |
| 88 | impl<'a, C : Constant, const N : usize> | |
| 89 | GlobalAnalysis<C::Type, Bounds<C::Type>> | |
| 90 | for Hat<C, N> { | |
| 91 | #[inline] | |
| 92 | fn global_analysis(&self) -> Bounds<C::Type> { | |
| 93 | Bounds(0.0, 1.0) | |
| 94 | } | |
| 95 | } | |
| 96 | ||
| 97 | impl<'a, C : Constant, const N : usize> | |
| 98 | LocalAnalysis<C::Type, Bounds<C::Type>, N> | |
| 99 | for Hat<C, N> { | |
| 100 | #[inline] | |
| 101 | fn local_analysis(&self, cube : &Cube<C::Type, N>) -> Bounds<C::Type> { | |
| 102 | // The function is maximised/minimised where the 1-norm is minimised/maximised. | |
| 103 | let lower = self.apply(cube.maxnorm_point()); | |
| 104 | let upper = self.apply(cube.minnorm_point()); | |
| 105 | Bounds(lower, upper) | |
| 106 | } | |
| 107 | } | |
| 108 | ||
| 109 | #[replace_float_literals(C::Type::cast_from(literal))] | |
| 110 | impl<'a, C : Constant, const N : usize> | |
| 111 | Norm<C::Type, Linfinity> | |
| 112 | for Hat<C, N> { | |
| 113 | #[inline] | |
| 114 | fn norm(&self, _ : Linfinity) -> C::Type { | |
| 115 | self.bounds().upper() | |
| 116 | } | |
| 117 | } | |
| 118 |