Tue, 31 Dec 2024 09:34:24 -0500
Early transport sketches
| 0 | 1 | /*! |
| 2 | Solver for the point source localisation problem with primal-dual proximal splitting. | |
| 3 | ||
| 4 | This corresponds to the manuscript | |
| 5 | ||
|
13
bdc57366d4f5
arXiv links, README beautification
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
6 | * Valkonen T. - _Proximal methods for point source localisation_, |
|
bdc57366d4f5
arXiv links, README beautification
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
7 | [arXiv:2212.02991](https://arxiv.org/abs/2212.02991). |
| 0 | 8 | |
| 9 | The main routine is [`pointsource_pdps`]. It is based on specilisatinn of | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
10 | [`generic_pointsource_fb_reg`] through relevant [`FBSpecialisation`] implementations. |
| 0 | 11 | Both norm-2-squared and norm-1 data terms are supported. That is, implemented are solvers for |
| 12 | <div> | |
| 13 | $$ | |
| 14 | \min_{μ ∈ ℳ(Ω)}~ F_0(Aμ - b) + α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(μ), | |
| 15 | $$ | |
| 16 | for both $F_0(y)=\frac{1}{2}\|y\|_2^2$ and $F_0(y)=\|y\|_1$ with the forward operator | |
| 17 | $A \in 𝕃(ℳ(Ω); ℝ^n)$. | |
| 18 | </div> | |
| 19 | ||
| 20 | ## Approach | |
| 21 | ||
| 22 | <p> | |
| 23 | The problem above can be written as | |
| 24 | $$ | |
| 25 | \min_μ \max_y G(μ) + ⟨y, Aμ-b⟩ - F_0^*(μ), | |
| 26 | $$ | |
| 27 | where $G(μ) = α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(μ)$. | |
| 28 | The Fenchel–Rockafellar optimality conditions, employing the predual in $ℳ(Ω)$, are | |
| 29 | $$ | |
| 30 | 0 ∈ A_*y + ∂G(μ) | |
| 31 | \quad\text{and}\quad | |
| 32 | Aμ - b ∈ ∂ F_0^*(y). | |
| 33 | $$ | |
| 34 | The solution of the first part is as for forward-backward, treated in the manuscript. | |
| 35 | This is the task of <code>generic_pointsource_fb</code>, where we use <code>FBSpecialisation</code> | |
| 36 | to replace the specific residual $Aμ-b$ by $y$. | |
| 37 | For $F_0(y)=\frac{1}{2}\|y\|_2^2$ the second part reads $y = Aμ -b$. | |
| 38 | For $F_0(y)=\|y\|_1$ the second part reads $y ∈ ∂\|·\|_1(Aμ - b)$. | |
| 39 | </p> | |
| 40 | ||
| 41 | Based on zero initialisation for $μ$, we use the [`Subdifferentiable`] trait to make an | |
| 42 | initialisation corresponding to the second part of the optimality conditions. | |
| 43 | In the algorithm itself, standard proximal steps are taking with respect to $F\_0^* + ⟨b, ·⟩$. | |
| 44 | */ | |
| 45 | ||
| 46 | use numeric_literals::replace_float_literals; | |
| 47 | use serde::{Serialize, Deserialize}; | |
| 48 | use nalgebra::DVector; | |
| 49 | use clap::ValueEnum; | |
| 50 | ||
| 32 | 51 | use alg_tools::iterate::{ |
| 52 | AlgIteratorFactory, | |
| 53 | AlgIteratorState, | |
| 54 | }; | |
| 0 | 55 | use alg_tools::loc::Loc; |
| 56 | use alg_tools::euclidean::Euclidean; | |
| 32 | 57 | use alg_tools::linops::Apply; |
| 0 | 58 | use alg_tools::norms::{ |
| 32 | 59 | Linfinity, |
| 60 | Projection, | |
| 0 | 61 | }; |
| 62 | use alg_tools::bisection_tree::{ | |
| 63 | BTFN, | |
| 64 | PreBTFN, | |
| 65 | Bounds, | |
| 66 | BTNodeLookup, | |
| 67 | BTNode, | |
| 68 | BTSearch, | |
| 69 | SupportGenerator, | |
| 70 | LocalAnalysis, | |
| 71 | }; | |
| 72 | use alg_tools::mapping::RealMapping; | |
| 73 | use alg_tools::nalgebra_support::ToNalgebraRealField; | |
| 74 | use alg_tools::linops::AXPY; | |
| 75 | ||
| 76 | use crate::types::*; | |
| 77 | use crate::measures::DiscreteMeasure; | |
| 32 | 78 | use crate::measures::merging::SpikeMerging; |
| 0 | 79 | use crate::forward_model::ForwardModel; |
| 32 | 80 | use crate::seminorms::DiscreteMeasureOp; |
| 0 | 81 | use crate::plot::{ |
| 82 | SeqPlotter, | |
| 83 | Plotting, | |
| 84 | PlotLookup | |
| 85 | }; | |
| 86 | use crate::fb::{ | |
| 87 | FBGenericConfig, | |
| 32 | 88 | insert_and_reweigh, |
| 89 | postprocess, | |
| 90 | prune_and_maybe_simple_merge | |
| 91 | }; | |
| 92 | use crate::regularisation::RegTerm; | |
| 93 | use crate::dataterm::{ | |
| 94 | DataTerm, | |
| 95 | L2Squared, | |
| 96 | L1 | |
| 0 | 97 | }; |
| 98 | ||
| 99 | /// Acceleration | |
| 100 | #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, ValueEnum, Debug)] | |
| 101 | pub enum Acceleration { | |
| 102 | /// No acceleration | |
| 103 | #[clap(name = "none")] | |
| 104 | None, | |
| 105 | /// Partial acceleration, $ω = 1/\sqrt{1+σ}$ | |
| 106 | #[clap(name = "partial", help = "Partial acceleration, ω = 1/√(1+σ)")] | |
| 107 | Partial, | |
| 108 | /// Full acceleration, $ω = 1/\sqrt{1+2σ}$; no gap convergence guaranteed | |
| 109 | #[clap(name = "full", help = "Full acceleration, ω = 1/√(1+2σ); no gap convergence guaranteed")] | |
| 110 | Full | |
| 111 | } | |
| 112 | ||
| 113 | /// Settings for [`pointsource_pdps`]. | |
| 114 | #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] | |
| 115 | #[serde(default)] | |
| 116 | pub struct PDPSConfig<F : Float> { | |
| 117 | /// Primal step length scaling. We must have `τ0 * σ0 < 1`. | |
| 118 | pub τ0 : F, | |
| 119 | /// Dual step length scaling. We must have `τ0 * σ0 < 1`. | |
| 120 | pub σ0 : F, | |
| 121 | /// Accelerate if available | |
| 122 | pub acceleration : Acceleration, | |
| 123 | /// Generic parameters | |
| 124 | pub insertion : FBGenericConfig<F>, | |
| 125 | } | |
| 126 | ||
| 127 | #[replace_float_literals(F::cast_from(literal))] | |
| 128 | impl<F : Float> Default for PDPSConfig<F> { | |
| 129 | fn default() -> Self { | |
| 130 | let τ0 = 0.5; | |
| 131 | PDPSConfig { | |
| 132 | τ0, | |
| 133 | σ0 : 0.99/τ0, | |
| 134 | acceleration : Acceleration::Partial, | |
| 135 | insertion : Default::default() | |
| 136 | } | |
| 137 | } | |
| 138 | } | |
| 139 | ||
| 32 | 140 | /// Trait for data terms for the PDPS |
| 141 | #[replace_float_literals(F::cast_from(literal))] | |
| 142 | pub trait PDPSDataTerm<F : Float, V, const N : usize> : DataTerm<F, V, N> { | |
| 143 | /// Calculate some subdifferential at `x` for the conjugate | |
| 144 | fn some_subdifferential(&self, x : V) -> V; | |
| 145 | ||
| 146 | /// Factor of strong convexity of the conjugate | |
| 147 | #[inline] | |
| 148 | fn factor_of_strong_convexity(&self) -> F { | |
| 149 | 0.0 | |
| 150 | } | |
| 151 | ||
| 152 | /// Perform dual update | |
| 153 | fn dual_update(&self, _y : &mut V, _y_prev : &V, _σ : F); | |
| 0 | 154 | } |
| 155 | ||
| 32 | 156 | |
| 157 | #[replace_float_literals(F::cast_from(literal))] | |
| 158 | impl<F : Float, V : Euclidean<F> + AXPY<F>, const N : usize> | |
| 159 | PDPSDataTerm<F, V, N> | |
| 160 | for L2Squared { | |
| 161 | fn some_subdifferential(&self, x : V) -> V { x } | |
| 0 | 162 | |
| 32 | 163 | fn factor_of_strong_convexity(&self) -> F { |
| 164 | 1.0 | |
| 165 | } | |
| 166 | ||
| 167 | #[inline] | |
| 168 | fn dual_update(&self, y : &mut V, y_prev : &V, σ : F) { | |
| 169 | y.axpy(1.0 / (1.0 + σ), &y_prev, σ / (1.0 + σ)); | |
| 170 | } | |
| 0 | 171 | } |
| 172 | ||
| 32 | 173 | #[replace_float_literals(F::cast_from(literal))] |
| 174 | impl<F : Float + nalgebra::RealField, const N : usize> | |
| 175 | PDPSDataTerm<F, DVector<F>, N> | |
| 176 | for L1 { | |
| 0 | 177 | fn some_subdifferential(&self, mut x : DVector<F>) -> DVector<F> { |
| 178 | // nalgebra sucks for providing second copies of the same stuff that's elsewhere as well. | |
| 179 | x.iter_mut() | |
| 180 | .for_each(|v| if *v != F::ZERO { *v = *v/<F as NumTraitsFloat>::abs(*v) }); | |
| 181 | x | |
| 182 | } | |
| 183 | ||
| 32 | 184 | #[inline] |
| 185 | fn dual_update(&self, y : &mut DVector<F>, y_prev : &DVector<F>, σ : F) { | |
| 186 | y.axpy(1.0, y_prev, σ); | |
| 0 | 187 | y.proj_ball_mut(1.0, Linfinity); |
| 188 | } | |
| 189 | } | |
| 190 | ||
| 191 | /// Iteratively solve the pointsource localisation problem using primal-dual proximal splitting. | |
| 192 | /// | |
| 193 | /// The `dataterm` should be either [`L1`] for norm-1 data term or [`L2Squared`] for norm-2-squared. | |
| 194 | /// The settings in `config` have their [respective documentation](PDPSConfig). `opA` is the | |
| 195 | /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. | |
| 196 | /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution | |
| 197 | /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control | |
| 198 | /// as documented in [`alg_tools::iterate`]. | |
| 199 | /// | |
| 200 | /// For the mathematical formulation, see the [module level](self) documentation and the manuscript. | |
| 201 | /// | |
| 202 | /// Returns the final iterate. | |
| 203 | #[replace_float_literals(F::cast_from(literal))] | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
204 | pub fn pointsource_pdps_reg<'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, D, Reg, const N : usize>( |
| 0 | 205 | opA : &'a A, |
| 206 | b : &'a A::Observable, | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
207 | reg : Reg, |
| 0 | 208 | op𝒟 : &'a 𝒟, |
| 32 | 209 | pdpsconfig : &PDPSConfig<F>, |
| 0 | 210 | iterator : I, |
| 32 | 211 | mut plotter : SeqPlotter<F, N>, |
| 0 | 212 | dataterm : D, |
| 213 | ) -> DiscreteMeasure<Loc<F, N>, F> | |
| 214 | where F : Float + ToNalgebraRealField, | |
| 215 | I : AlgIteratorFactory<IterInfo<F, N>>, | |
| 216 | for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable> | |
| 217 | + std::ops::Add<A::Observable, Output=A::Observable>, | |
| 218 | //+ std::ops::Mul<F, Output=A::Observable>, // <-- FIXME: compiler overflow | |
| 219 | A::Observable : std::ops::MulAssign<F>, | |
| 220 | GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, | |
| 221 | A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> | |
| 32 | 222 | + Lipschitz<&'a 𝒟, FloatType=F>, |
| 0 | 223 | BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, |
| 224 | G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, | |
| 225 | 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, | |
| 226 | 𝒟::Codomain : RealMapping<F, N>, | |
| 227 | S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
| 228 | K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
| 229 | BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, | |
| 230 | PlotLookup : Plotting<N>, | |
| 231 | DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>, | |
| 32 | 232 | D : PDPSDataTerm<F, A::Observable, N>, |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
233 | Reg : RegTerm<F, N> { |
| 0 | 234 | |
| 32 | 235 | // Set up parameters |
| 236 | let config = &pdpsconfig.insertion; | |
| 237 | let op𝒟norm = op𝒟.opnorm_bound(); | |
| 0 | 238 | let l = opA.lipschitz_factor(&op𝒟).unwrap().sqrt(); |
| 32 | 239 | let mut τ = pdpsconfig.τ0 / l; |
| 240 | let mut σ = pdpsconfig.σ0 / l; | |
| 241 | let γ = dataterm.factor_of_strong_convexity(); | |
| 242 | ||
| 243 | // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled | |
| 244 | // by τ compared to the conditional gradient approach. | |
| 245 | let tolerance = config.tolerance * τ * reg.tolerance_scaling(); | |
| 246 | let mut ε = tolerance.initial(); | |
| 247 | ||
| 248 | // Initialise iterates | |
| 249 | let mut μ = DiscreteMeasure::new(); | |
| 250 | let mut y = dataterm.some_subdifferential(-b); | |
| 251 | let mut y_prev = y.clone(); | |
| 252 | let mut stats = IterInfo::new(); | |
| 253 | ||
| 254 | // Run the algorithm | |
| 255 | iterator.iterate(|state| { | |
| 256 | // Calculate smooth part of surrogate model. | |
| 257 | // Using `std::mem::replace` here is not ideal, and expects that `empty_observable` | |
| 258 | // has no significant overhead. For some reosn Rust doesn't allow us simply moving | |
| 259 | // the residual and replacing it below before the end of this closure. | |
| 260 | y *= -τ; | |
| 261 | let r = std::mem::replace(&mut y, opA.empty_observable()); | |
| 262 | let minus_τv = opA.preadjoint().apply(r); | |
| 263 | ||
| 264 | // Save current base point | |
| 265 | let μ_base = μ.clone(); | |
| 266 | ||
| 267 | // Insert and reweigh | |
| 268 | let (d, within_tolerances) = insert_and_reweigh( | |
| 269 | &mut μ, &minus_τv, &μ_base, None, | |
| 270 | op𝒟, op𝒟norm, | |
| 271 | τ, ε, | |
| 272 | config, ®, state, &mut stats | |
| 273 | ); | |
| 274 | ||
| 275 | // Prune and possibly merge spikes | |
| 276 | prune_and_maybe_simple_merge( | |
| 277 | &mut μ, &minus_τv, &μ_base, | |
| 278 | op𝒟, | |
| 279 | τ, ε, | |
| 280 | config, ®, state, &mut stats | |
| 281 | ); | |
| 0 | 282 | |
| 32 | 283 | // Update step length parameters |
| 284 | let ω = match pdpsconfig.acceleration { | |
| 285 | Acceleration::None => 1.0, | |
| 286 | Acceleration::Partial => { | |
| 287 | let ω = 1.0 / (1.0 + γ * σ).sqrt(); | |
| 288 | σ = σ * ω; | |
| 289 | τ = τ / ω; | |
| 290 | ω | |
| 291 | }, | |
| 292 | Acceleration::Full => { | |
| 293 | let ω = 1.0 / (1.0 + 2.0 * γ * σ).sqrt(); | |
| 294 | σ = σ * ω; | |
| 295 | τ = τ / ω; | |
| 296 | ω | |
| 297 | }, | |
| 298 | }; | |
| 299 | ||
| 300 | // Do dual update | |
| 301 | y = b.clone(); // y = b | |
| 302 | opA.gemv(&mut y, 1.0 + ω, &μ, -1.0); // y = A[(1+ω)μ^{k+1}]-b | |
| 303 | opA.gemv(&mut y, -ω, &μ_base, 1.0); // y = A[(1+ω)μ^{k+1} - ω μ^k]-b | |
| 304 | dataterm.dual_update(&mut y, &y_prev, σ); | |
| 305 | y_prev.copy_from(&y); | |
| 0 | 306 | |
| 32 | 307 | // Update main tolerance for next iteration |
| 308 | let ε_prev = ε; | |
| 309 | ε = tolerance.update(ε, state.iteration()); | |
| 310 | stats.this_iters += 1; | |
| 311 | ||
| 312 | // Give function value if needed | |
| 313 | state.if_verbose(|| { | |
| 314 | // Plot if so requested | |
| 315 | plotter.plot_spikes( | |
| 316 | format!("iter {} end; {}", state.iteration(), within_tolerances), &d, | |
| 317 | "start".to_string(), Some(&minus_τv), | |
| 318 | reg.target_bounds(τ, ε_prev), &μ, | |
| 319 | ); | |
| 320 | // Calculate mean inner iterations and reset relevant counters. | |
| 321 | // Return the statistics | |
| 322 | let res = IterInfo { | |
| 323 | value : dataterm.calculate_fit_op(&μ, opA, b) + reg.apply(&μ), | |
| 324 | n_spikes : μ.len(), | |
| 325 | ε : ε_prev, | |
| 326 | postprocessing: config.postprocessing.then(|| μ.clone()), | |
| 327 | .. stats | |
| 328 | }; | |
| 329 | stats = IterInfo::new(); | |
| 330 | res | |
| 331 | }) | |
| 332 | }); | |
| 333 | ||
| 334 | postprocess(μ, config, dataterm, opA, b) | |
|
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
335 | } |
|
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
13
diff
changeset
|
336 |