Sat, 01 Feb 2025 16:47:11 -0500
Parameter adjustments
35 | 1 | /*! |
2 | Sensor grid forward model | |
3 | */ | |
4 | ||
5 | use numeric_literals::replace_float_literals; | |
6 | use nalgebra::base::{ | |
7 | DMatrix, | |
8 | DVector | |
9 | }; | |
10 | use std::iter::Zip; | |
11 | use std::ops::RangeFrom; | |
12 | ||
13 | pub use alg_tools::linops::*; | |
14 | use alg_tools::norms::{ | |
15 | L1, Linfinity, L2, Norm | |
16 | }; | |
17 | use alg_tools::bisection_tree::*; | |
18 | use alg_tools::mapping::{ | |
19 | RealMapping, | |
20 | DifferentiableMapping | |
21 | }; | |
22 | use alg_tools::lingrid::*; | |
23 | use alg_tools::iter::{MapX, Mappable}; | |
24 | use alg_tools::nalgebra_support::ToNalgebraRealField; | |
25 | use alg_tools::tabledump::write_csv; | |
26 | use alg_tools::error::DynError; | |
27 | use alg_tools::maputil::map2; | |
28 | use alg_tools::instance::Instance; | |
29 | ||
30 | use crate::types::*; | |
31 | use crate::measures::{DiscreteMeasure, Radon}; | |
32 | use crate::seminorms::{ | |
33 | ConvolutionOp, | |
34 | SimpleConvolutionKernel, | |
35 | }; | |
36 | use crate::kernels::{ | |
37 | Convolution, | |
38 | AutoConvolution, | |
39 | BoundedBy, | |
40 | }; | |
41 | use crate::preadjoint_helper::PreadjointHelper; | |
42 | use super::{ | |
43 | ForwardModel, | |
44 | 44 | BoundedCurvature, |
35 | 45 | AdjointProductBoundedBy |
46 | }; | |
47 | use crate::frank_wolfe::FindimQuadraticModel; | |
48 | ||
49 | type RNDM<F, const N : usize> = DiscreteMeasure<Loc<F,N>, F>; | |
50 | ||
51 | pub type ShiftedSensor<F, S, P, const N : usize> = Shift<Convolution<S, P>, F, N>; | |
52 | ||
53 | /// Trait for physical convolution models. Has blanket implementation for all cases. | |
54 | pub trait Spread<F : Float, const N : usize> | |
55 | : 'static + Clone + Support<F, N> + RealMapping<F, N> + Bounded<F> {} | |
56 | ||
57 | impl<F, T, const N : usize> Spread<F, N> for T | |
58 | where F : Float, | |
59 | T : 'static + Clone + Support<F, N> + Bounded<F> + RealMapping<F, N> {} | |
60 | ||
61 | /// Trait for compactly supported sensors. Has blanket implementation for all cases. | |
62 | pub trait Sensor<F : Float, const N : usize> : Spread<F, N> + Norm<F, L1> + Norm<F, Linfinity> {} | |
63 | ||
64 | impl<F, T, const N : usize> Sensor<F, N> for T | |
65 | where F : Float, | |
66 | T : Spread<F, N> + Norm<F, L1> + Norm<F, Linfinity> {} | |
67 | ||
68 | ||
69 | pub trait SensorGridBT<F, S, P, const N : usize> : | |
70 | Clone + BTImpl<F, N, Data=usize, Agg=Bounds<F>> | |
71 | where F : Float, | |
72 | S : Sensor<F, N>, | |
73 | P : Spread<F, N> {} | |
74 | ||
75 | impl<F, S, P, T, const N : usize> | |
76 | SensorGridBT<F, S, P, N> | |
77 | for T | |
78 | where T : Clone + BTImpl<F, N, Data=usize, Agg=Bounds<F>>, | |
79 | F : Float, | |
80 | S : Sensor<F, N>, | |
81 | P : Spread<F, N> {} | |
82 | ||
83 | // We need type alias bounds to access associated types | |
84 | #[allow(type_alias_bounds)] | |
85 | pub type SensorGridBTFN<F, S, P, BT : SensorGridBT<F, S, P, N>, const N : usize> | |
86 | = BTFN<F, SensorGridSupportGenerator<F, S, P, N>, BT, N>; | |
87 | ||
88 | /// Sensor grid forward model | |
89 | #[derive(Clone)] | |
90 | pub struct SensorGrid<F, S, P, BT, const N : usize> | |
91 | where F : Float, | |
92 | S : Sensor<F, N>, | |
93 | P : Spread<F, N>, | |
94 | Convolution<S, P> : Spread<F, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
95 | BT : SensorGridBT<F, S, P, N>, |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
96 | { |
35 | 97 | domain : Cube<F, N>, |
98 | sensor_count : [usize; N], | |
99 | sensor : S, | |
100 | spread : P, | |
101 | base_sensor : Convolution<S, P>, | |
102 | bt : BT, | |
103 | } | |
104 | ||
105 | impl<F, S, P, BT, const N : usize> SensorGrid<F, S, P, BT, N> | |
106 | where F : Float, | |
107 | BT : SensorGridBT<F, S, P, N>, | |
108 | S : Sensor<F, N>, | |
109 | P : Spread<F, N>, | |
110 | Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
111 | { |
35 | 112 | |
113 | /// Create a new sensor grid. | |
114 | /// | |
115 | /// The parameter `depth` indicates the search depth of the created [`BT`]s | |
116 | /// for the adjoint values. | |
117 | pub fn new( | |
118 | domain : Cube<F, N>, | |
119 | sensor_count : [usize; N], | |
120 | sensor : S, | |
121 | spread : P, | |
122 | depth : BT::Depth | |
123 | ) -> Self { | |
124 | let base_sensor = Convolution(sensor.clone(), spread.clone()); | |
125 | let bt = BT::new(domain, depth); | |
126 | let mut sensorgrid = SensorGrid { | |
127 | domain, | |
128 | sensor_count, | |
129 | sensor, | |
130 | spread, | |
131 | base_sensor, | |
132 | bt, | |
133 | }; | |
134 | ||
135 | for (x, id) in sensorgrid.grid().into_iter().zip(0usize..) { | |
136 | let s = sensorgrid.shifted_sensor(x); | |
137 | sensorgrid.bt.insert(id, &s); | |
138 | } | |
139 | ||
140 | sensorgrid | |
141 | } | |
142 | } | |
143 | ||
144 | ||
145 | impl<F, S, P, BT, const N : usize> SensorGrid<F, S, P, BT, N> | |
146 | where F : Float, | |
147 | BT : SensorGridBT<F, S, P, N>, | |
148 | S : Sensor<F, N>, | |
149 | P : Spread<F, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
150 | Convolution<S, P> : Spread<F, N> |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
151 | { |
35 | 152 | |
153 | /// Return the grid of sensor locations. | |
154 | pub fn grid(&self) -> LinGrid<F, N> { | |
155 | lingrid_centered(&self.domain, &self.sensor_count) | |
156 | } | |
157 | ||
158 | /// Returns the number of sensors (number of grid points) | |
159 | pub fn n_sensors(&self) -> usize { | |
160 | self.sensor_count.iter().product() | |
161 | } | |
162 | ||
163 | /// Constructs a sensor shifted by `x`. | |
164 | #[inline] | |
165 | fn shifted_sensor(&self, x : Loc<F, N>) -> ShiftedSensor<F, S, P, N> { | |
166 | self.base_sensor.clone().shift(x) | |
167 | } | |
168 | ||
169 | #[inline] | |
170 | fn _zero_observable(&self) -> DVector<F> { | |
171 | DVector::zeros(self.n_sensors()) | |
172 | } | |
173 | ||
174 | /// Returns the maximum number of overlapping sensors $N_\psi$. | |
175 | pub fn max_overlapping(&self) -> F { | |
176 | let w = self.base_sensor.support_hint().width(); | |
177 | let d = map2(self.domain.width(), &self.sensor_count, |wi, &i| wi/F::cast_from(i)); | |
178 | w.iter() | |
179 | .zip(d.iter()) | |
180 | .map(|(&wi, &di)| (wi/di).ceil()) | |
181 | .reduce(F::mul) | |
182 | .unwrap() | |
183 | } | |
184 | } | |
185 | ||
186 | impl<F, S, P, BT, const N : usize> Mapping<RNDM<F, N>> for SensorGrid<F, S, P, BT, N> | |
187 | where | |
188 | F : Float, | |
189 | BT : SensorGridBT<F, S, P, N>, | |
190 | S : Sensor<F, N>, | |
191 | P : Spread<F, N>, | |
192 | Convolution<S, P> : Spread<F, N>, | |
193 | { | |
194 | ||
195 | type Codomain = DVector<F>; | |
196 | ||
197 | #[inline] | |
198 | fn apply<I : Instance<RNDM<F, N>>>(&self, μ : I) -> DVector<F> { | |
199 | let mut y = self._zero_observable(); | |
200 | self.apply_add(&mut y, μ); | |
201 | y | |
202 | } | |
203 | } | |
204 | ||
205 | ||
206 | impl<F, S, P, BT, const N : usize> Linear<RNDM<F, N>> for SensorGrid<F, S, P, BT, N> | |
207 | where | |
208 | F : Float, | |
209 | BT : SensorGridBT<F, S, P, N>, | |
210 | S : Sensor<F, N>, | |
211 | P : Spread<F, N>, | |
212 | Convolution<S, P> : Spread<F, N>, | |
213 | { } | |
214 | ||
215 | ||
216 | #[replace_float_literals(F::cast_from(literal))] | |
217 | impl<F, S, P, BT, const N : usize> GEMV<F, RNDM<F, N>, DVector<F>> for SensorGrid<F, S, P, BT, N> | |
218 | where F : Float, | |
219 | BT : SensorGridBT<F, S, P, N>, | |
220 | S : Sensor<F, N>, | |
221 | P : Spread<F, N>, | |
222 | Convolution<S, P> : Spread<F, N>, | |
223 | { | |
224 | ||
225 | fn gemv<I : Instance<RNDM<F, N>>>( | |
226 | &self, y : &mut DVector<F>, α : F, μ : I, β : F | |
227 | ) { | |
228 | let grid = self.grid(); | |
229 | if β == 0.0 { | |
230 | y.fill(0.0) | |
231 | } else if β != 1.0 { | |
232 | *y *= β; // Need to multiply first, as we have to be able to add to y. | |
233 | } | |
234 | if α == 1.0 { | |
235 | self.apply_add(y, μ) | |
236 | } else { | |
237 | for δ in μ.ref_instance() { | |
238 | for &d in self.bt.iter_at(&δ.x) { | |
239 | let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d)); | |
240 | y[d] += sensor.apply(&δ.x) * (α * δ.α); | |
241 | } | |
242 | } | |
243 | } | |
244 | } | |
245 | ||
246 | fn apply_add<I : Instance<RNDM<F, N>>>( | |
247 | &self, y : &mut DVector<F>, μ : I | |
248 | ) { | |
249 | let grid = self.grid(); | |
250 | for δ in μ.ref_instance() { | |
251 | for &d in self.bt.iter_at(&δ.x) { | |
252 | let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d)); | |
253 | y[d] += sensor.apply(&δ.x) * δ.α; | |
254 | } | |
255 | } | |
256 | } | |
257 | ||
258 | } | |
259 | ||
260 | ||
261 | impl<F, S, P, BT, const N : usize> | |
262 | BoundedLinear<RNDM<F, N>, Radon, L2, F> | |
263 | for SensorGrid<F, S, P, BT, N> | |
264 | where F : Float, | |
265 | BT : SensorGridBT<F, S, P, N, Agg=Bounds<F>>, | |
266 | S : Sensor<F, N>, | |
267 | P : Spread<F, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
268 | Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N> |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
269 | { |
35 | 270 | |
271 | /// An estimate on the operator norm in $𝕃(ℳ(Ω); ℝ^n)$ with $ℳ(Ω)$ equipped | |
272 | /// with the Radon norm, and $ℝ^n$ with the Euclidean norm. | |
273 | fn opnorm_bound(&self, _ : Radon, _ : L2) -> F { | |
274 | // With {x_i}_{i=1}^n the grid centres and φ the kernel, we have | |
275 | // |Aμ|_2 = sup_{|z|_2 ≤ 1} ⟨z,Αμ⟩ = sup_{|z|_2 ≤ 1} ⟨A^*z|μ⟩ | |
276 | // ≤ sup_{|z|_2 ≤ 1} |A^*z|_∞ |μ|_ℳ | |
277 | // = sup_{|z|_2 ≤ 1} |∑ φ(· - x_i)z_i|_∞ |μ|_ℳ | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
278 | // ≤ sup_{|z|_2 ≤ 1} |φ(y)| ∑_{i:th sensor active at y}|z_i| |μ|_ℳ |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
279 | // where the supremum of |∑ φ(· - x_i)z_i|_∞ is reached at y |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
280 | // ≤ sup_{|z|_2 ≤ 1} |φ|_∞ √N_ψ |z|_2 |μ|_ℳ |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
281 | // where N_ψ is the maximum number of sensors that overlap, and |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
282 | // |z|_2 is restricted to the active sensors. |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
283 | // = |φ|_∞ √N_ψ |μ|_ℳ. |
35 | 284 | // Hence |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
285 | let n = self.max_overlapping(); |
35 | 286 | self.base_sensor.bounds().uniform() * n.sqrt() |
287 | } | |
288 | } | |
289 | ||
290 | type SensorGridPreadjoint<'a, A, F, const N : usize> = PreadjointHelper<'a, A, RNDM<F,N>>; | |
291 | ||
292 | ||
293 | impl<F, S, P, BT, const N : usize> | |
294 | Preadjointable<RNDM<F, N>, DVector<F>> | |
295 | for SensorGrid<F, S, P, BT, N> | |
296 | where F : Float, | |
297 | BT : SensorGridBT<F, S, P, N>, | |
298 | S : Sensor<F, N>, | |
299 | P : Spread<F, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
300 | Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N> |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
301 | { |
35 | 302 | type PreadjointCodomain = BTFN<F, SensorGridSupportGenerator<F, S, P, N>, BT, N>; |
303 | type Preadjoint<'a> = SensorGridPreadjoint<'a, Self, F, N> where Self : 'a; | |
304 | ||
305 | fn preadjoint(&self) -> Self::Preadjoint<'_> { | |
306 | PreadjointHelper::new(self) | |
307 | } | |
308 | } | |
309 | ||
44 | 310 | /* |
35 | 311 | #[replace_float_literals(F::cast_from(literal))] |
312 | impl<'a, F, S, P, BT, const N : usize> LipschitzValues | |
313 | for SensorGridPreadjoint<'a, SensorGrid<F, S, P, BT, N>, F, N> | |
314 | where F : Float, | |
315 | BT : SensorGridBT<F, S, P, N>, | |
316 | S : Sensor<F, N>, | |
317 | P : Spread<F, N>, | |
318 | Convolution<S, P> : Spread<F, N> + Lipschitz<L2, FloatType=F> + DifferentiableMapping<Loc<F,N>> + LocalAnalysis<F, BT::Agg, N>, | |
319 | for<'b> <Convolution<S, P> as DifferentiableMapping<Loc<F,N>>>::Differential<'b> : Lipschitz<L2, FloatType=F>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
320 | { |
35 | 321 | |
322 | type FloatType = F; | |
323 | ||
324 | fn value_unit_lipschitz_factor(&self) -> Option<F> { | |
325 | // The Lipschitz factor of the sensors has to be scaled by the square root of twice | |
326 | // the number of overlapping sensors at a single ponit, as Lipschitz estimates involve | |
327 | // two points. | |
328 | let fw = self.forward_op; | |
329 | let n = fw.max_overlapping(); | |
330 | fw.base_sensor.lipschitz_factor(L2).map(|l| (2.0 * n).sqrt() * l) | |
331 | } | |
332 | ||
333 | fn value_diff_unit_lipschitz_factor(&self) -> Option<F> { | |
334 | // The Lipschitz factor of the sensors has to be scaled by the square root of twice | |
335 | // the number of overlapping sensors at a single ponit, as Lipschitz estimates involve | |
336 | // two points. | |
337 | let fw = self.forward_op; | |
338 | let n = fw.max_overlapping(); | |
339 | fw.base_sensor.diff_ref().lipschitz_factor(L2).map(|l| (2.0 * n).sqrt() * l) | |
340 | } | |
341 | } | |
44 | 342 | */ |
343 | ||
344 | #[replace_float_literals(F::cast_from(literal))] | |
345 | impl<'a, F, S, P, BT, const N : usize> BoundedCurvature | |
346 | for SensorGrid<F, S, P, BT, N> | |
347 | where F : Float, | |
348 | BT : SensorGridBT<F, S, P, N>, | |
349 | S : Sensor<F, N>, | |
350 | P : Spread<F, N>, | |
351 | Convolution<S, P> : Spread<F, N> + Lipschitz<L2, FloatType=F> + DifferentiableMapping<Loc<F,N>> + LocalAnalysis<F, BT::Agg, N>, | |
352 | for<'b> <Convolution<S, P> as DifferentiableMapping<Loc<F,N>>>::Differential<'b> : Lipschitz<L2, FloatType=F>, | |
353 | { | |
354 | ||
355 | type FloatType = F; | |
356 | ||
357 | /// Returns a bound $ℓ_F$ on the curvature | |
358 | /// $$ | |
359 | /// 𝒦_F(μ, γ) = ∫ B_{F'(μ)} dγ + B_F(μ, μ+Δ). | |
360 | /// $$ | |
361 | /// such that $𝒦_F(μ, γ) ≤ ℓ_F ∫ c_2 d|γ|$. | |
362 | /// | |
363 | /// For $F(μ)=(1/2)‖Aμ-b‖^2$, we have $B_F(μ, μ+Δ)=(1/2)‖AΔ‖^2$, where $Δ = (π_♯^1-π_♯^0)γ$. | |
364 | /// So we use Lemma 3.8 for that, bounding | |
365 | /// $(1/2)‖AΔ‖^2 ≤ Θ ∫ c_2 dγ$ for $Θ=2N_ψML_ψ^2$, where | |
366 | /// * $L_ψ$ is the 2-norm Lipschitz factor of $ψ$ (sensor * base_spread), and | |
367 | /// * $N_ψ$ the maximum overlap, | |
368 | /// * M is a bound on $|γ|(Ω^2)$. | |
369 | /// | |
370 | /// We also have $B_{F'(μ)}(x, y) = v(y) - v(x) ⟨∇v(x), x-y⟩$ for $v(x)=A^*(Aμ-b)$. | |
371 | /// This we want the Lipschitz factor of $∇v$. | |
372 | /// By Example 4.15, it makes sense to estimate this by $√(2N_ψ)L_{∇ψ}‖b‖$, where | |
373 | /// $L_{∇ψ}$ is the Lipshitz factor of $∇ψ$. | |
374 | fn curvature_bound_components(&self) -> (Option<Self::FloatType>, Option<Self::FloatType>) { | |
375 | let n_ψ = self.max_overlapping(); | |
376 | let ψ_diff_lip = self.base_sensor.diff_ref().lipschitz_factor(L2); | |
377 | let ψ_lip = self.base_sensor.lipschitz_factor(L2); | |
378 | let a = ψ_diff_lip.map(|l| (2.0 * n_ψ).sqrt() * l); | |
379 | let b = ψ_lip.map(|l| 2.0 * n_ψ * l.powi(2)); | |
380 | ||
381 | (a, b) | |
382 | } | |
383 | } | |
384 | ||
385 | ||
35 | 386 | |
387 | #[derive(Clone,Debug)] | |
388 | pub struct SensorGridSupportGenerator<F, S, P, const N : usize> | |
389 | where F : Float, | |
390 | S : Sensor<F, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
391 | P : Spread<F, N> |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
392 | { |
35 | 393 | base_sensor : Convolution<S, P>, |
394 | grid : LinGrid<F, N>, | |
395 | weights : DVector<F> | |
396 | } | |
397 | ||
398 | impl<F, S, P, const N : usize> SensorGridSupportGenerator<F, S, P, N> | |
399 | where F : Float, | |
400 | S : Sensor<F, N>, | |
401 | P : Spread<F, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
402 | Convolution<S, P> : Spread<F, N> |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
403 | { |
35 | 404 | |
405 | #[inline] | |
406 | fn construct_sensor(&self, id : usize, w : F) -> Weighted<ShiftedSensor<F, S, P, N>, F> { | |
407 | let x = self.grid.entry_linear_unchecked(id); | |
408 | self.base_sensor.clone().shift(x).weigh(w) | |
409 | } | |
410 | ||
411 | #[inline] | |
412 | fn construct_sensor_and_id<'a>(&'a self, (id, w) : (usize, &'a F)) | |
413 | -> (usize, Weighted<ShiftedSensor<F, S, P, N>, F>) { | |
414 | (id.into(), self.construct_sensor(id, *w)) | |
415 | } | |
416 | } | |
417 | ||
418 | impl<F, S, P, const N : usize> SupportGenerator<F, N> | |
419 | for SensorGridSupportGenerator<F, S, P, N> | |
420 | where F : Float, | |
421 | S : Sensor<F, N>, | |
422 | P : Spread<F, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
423 | Convolution<S, P> : Spread<F, N> |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
424 | { |
35 | 425 | type Id = usize; |
426 | type SupportType = Weighted<ShiftedSensor<F, S, P, N>, F>; | |
427 | type AllDataIter<'a> = MapX<'a, Zip<RangeFrom<usize>, | |
428 | std::slice::Iter<'a, F>>, | |
429 | Self, | |
430 | (Self::Id, Self::SupportType)> | |
431 | where Self : 'a; | |
432 | ||
433 | #[inline] | |
434 | fn support_for(&self, d : Self::Id) -> Self::SupportType { | |
435 | self.construct_sensor(d, self.weights[d]) | |
436 | } | |
437 | ||
438 | #[inline] | |
439 | fn support_count(&self) -> usize { | |
440 | self.weights.len() | |
441 | } | |
442 | ||
443 | #[inline] | |
444 | fn all_data(&self) -> Self::AllDataIter<'_> { | |
445 | (0..).zip(self.weights.as_slice().iter()).mapX(self, Self::construct_sensor_and_id) | |
446 | } | |
447 | } | |
448 | ||
449 | impl<F, S, P, BT, const N : usize> ForwardModel<DiscreteMeasure<Loc<F, N>, F>, F> | |
450 | for SensorGrid<F, S, P, BT, N> | |
451 | where F : Float + ToNalgebraRealField<MixedType=F> + nalgebra::RealField, | |
452 | BT : SensorGridBT<F, S, P, N>, | |
453 | S : Sensor<F, N>, | |
454 | P : Spread<F, N>, | |
455 | Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
456 | { |
35 | 457 | type Observable = DVector<F>; |
458 | ||
459 | fn write_observable(&self, b : &Self::Observable, prefix : String) -> DynError { | |
460 | let it = self.grid().into_iter().zip(b.iter()).map(|(x, &v)| (x, v)); | |
461 | write_csv(it, prefix + ".txt") | |
462 | } | |
463 | ||
464 | #[inline] | |
465 | fn zero_observable(&self) -> Self::Observable { | |
466 | self._zero_observable() | |
467 | } | |
468 | } | |
469 | ||
470 | impl<F, S, P, BT, const N : usize> FindimQuadraticModel<Loc<F, N>, F> | |
471 | for SensorGrid<F, S, P, BT, N> | |
472 | where F : Float + ToNalgebraRealField<MixedType=F> + nalgebra::RealField, | |
473 | BT : SensorGridBT<F, S, P, N>, | |
474 | S : Sensor<F, N>, | |
475 | P : Spread<F, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
476 | Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, BT::Agg, N> |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
477 | { |
35 | 478 | |
479 | fn findim_quadratic_model( | |
480 | &self, | |
481 | μ : &DiscreteMeasure<Loc<F, N>, F>, | |
482 | b : &Self::Observable | |
483 | ) -> (DMatrix<F::MixedType>, DVector<F::MixedType>) { | |
484 | assert_eq!(b.len(), self.n_sensors()); | |
485 | let mut mA = DMatrix::zeros(self.n_sensors(), μ.len()); | |
486 | let grid = self.grid(); | |
487 | for (mut mAcol, δ) in mA.column_iter_mut().zip(μ.iter_spikes()) { | |
488 | for &d in self.bt.iter_at(&δ.x) { | |
489 | let sensor = self.shifted_sensor(grid.entry_linear_unchecked(d)); | |
490 | mAcol[d] += sensor.apply(&δ.x); | |
491 | } | |
492 | } | |
493 | let mAt = mA.transpose(); | |
494 | (&mAt * mA, &mAt * b) | |
495 | } | |
496 | } | |
497 | ||
498 | /// Implements the calculation a factor $L$ such that $A_*A ≤ L 𝒟$ for $A$ the forward model | |
499 | /// and $𝒟$ a seminorm of suitable form. | |
500 | /// | |
501 | /// **This assumes (but does not check) that the sensors are not overlapping.** | |
502 | #[replace_float_literals(F::cast_from(literal))] | |
503 | impl<F, BT, S, P, K, const N : usize> | |
504 | AdjointProductBoundedBy<RNDM<F, N>, ConvolutionOp<F, K, BT, N>> | |
505 | for SensorGrid<F, S, P, BT, N> | |
506 | where F : Float + nalgebra::RealField + ToNalgebraRealField, | |
507 | BT : SensorGridBT<F, S, P, N>, | |
508 | S : Sensor<F, N>, | |
509 | P : Spread<F, N>, | |
510 | Convolution<S, P> : Spread<F, N>, | |
511 | K : SimpleConvolutionKernel<F, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
512 | AutoConvolution<P> : BoundedBy<F, K> |
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
513 | { |
35 | 514 | |
515 | type FloatType = F; | |
516 | ||
517 | fn adjoint_product_bound(&self, seminorm : &ConvolutionOp<F, K, BT, N>) -> Option<F> { | |
518 | // Sensors should not take on negative values to allow | |
519 | // A_*A to be upper bounded by a simple convolution of `spread`. | |
520 | if self.sensor.bounds().lower() < 0.0 { | |
521 | return None | |
522 | } | |
523 | ||
524 | // Calculate the factor $L_1$ for betwee $ℱ[ψ * ψ] ≤ L_1 ℱ[ρ]$ for $ψ$ the base spread | |
525 | // and $ρ$ the kernel of the seminorm. | |
526 | let l1 = AutoConvolution(self.spread.clone()).bounding_factor(seminorm.kernel())?; | |
527 | ||
528 | // Calculate the factor for transitioning from $A_*A$ to `AutoConvolution<P>`, where A | |
529 | // consists of several `Convolution<S, P>` for the physical model `P` and the sensor `S`. | |
530 | let l0 = self.sensor.norm(Linfinity) * self.sensor.norm(L1); | |
531 | ||
532 | // The final transition factor is: | |
533 | Some(l0 * l1) | |
534 | } | |
535 | } | |
536 | ||
537 | macro_rules! make_sensorgridsupportgenerator_scalarop_rhs { | |
538 | ($trait:ident, $fn:ident, $trait_assign:ident, $fn_assign:ident) => { | |
539 | impl<F, S, P, const N : usize> | |
540 | std::ops::$trait_assign<F> | |
541 | for SensorGridSupportGenerator<F, S, P, N> | |
542 | where F : Float, | |
543 | S : Sensor<F, N>, | |
544 | P : Spread<F, N>, | |
545 | Convolution<S, P> : Spread<F, N> { | |
546 | fn $fn_assign(&mut self, t : F) { | |
547 | self.weights.$fn_assign(t); | |
548 | } | |
549 | } | |
550 | ||
551 | impl<F, S, P, const N : usize> | |
552 | std::ops::$trait<F> | |
553 | for SensorGridSupportGenerator<F, S, P, N> | |
554 | where F : Float, | |
555 | S : Sensor<F, N>, | |
556 | P : Spread<F, N>, | |
557 | Convolution<S, P> : Spread<F, N> { | |
558 | type Output = SensorGridSupportGenerator<F, S, P, N>; | |
559 | fn $fn(mut self, t : F) -> Self::Output { | |
560 | std::ops::$trait_assign::$fn_assign(&mut self.weights, t); | |
561 | self | |
562 | } | |
563 | } | |
564 | ||
565 | impl<'a, F, S, P, const N : usize> | |
566 | std::ops::$trait<F> | |
567 | for &'a SensorGridSupportGenerator<F, S, P, N> | |
568 | where F : Float, | |
569 | S : Sensor<F, N>, | |
570 | P : Spread<F, N>, | |
571 | Convolution<S, P> : Spread<F, N> { | |
572 | type Output = SensorGridSupportGenerator<F, S, P, N>; | |
573 | fn $fn(self, t : F) -> Self::Output { | |
574 | SensorGridSupportGenerator{ | |
575 | base_sensor : self.base_sensor.clone(), | |
576 | grid : self.grid, | |
577 | weights : (&self.weights).$fn(t) | |
578 | } | |
579 | } | |
580 | } | |
581 | } | |
582 | } | |
583 | ||
584 | make_sensorgridsupportgenerator_scalarop_rhs!(Mul, mul, MulAssign, mul_assign); | |
585 | make_sensorgridsupportgenerator_scalarop_rhs!(Div, div, DivAssign, div_assign); | |
586 | ||
587 | macro_rules! make_sensorgridsupportgenerator_unaryop { | |
588 | ($trait:ident, $fn:ident) => { | |
589 | impl<F, S, P, const N : usize> | |
590 | std::ops::$trait | |
591 | for SensorGridSupportGenerator<F, S, P, N> | |
592 | where F : Float, | |
593 | S : Sensor<F, N>, | |
594 | P : Spread<F, N>, | |
595 | Convolution<S, P> : Spread<F, N> { | |
596 | type Output = SensorGridSupportGenerator<F, S, P, N>; | |
597 | fn $fn(mut self) -> Self::Output { | |
598 | self.weights = self.weights.$fn(); | |
599 | self | |
600 | } | |
601 | } | |
602 | ||
603 | impl<'a, F, S, P, const N : usize> | |
604 | std::ops::$trait | |
605 | for &'a SensorGridSupportGenerator<F, S, P, N> | |
606 | where F : Float, | |
607 | S : Sensor<F, N>, | |
608 | P : Spread<F, N>, | |
609 | Convolution<S, P> : Spread<F, N> { | |
610 | type Output = SensorGridSupportGenerator<F, S, P, N>; | |
611 | fn $fn(self) -> Self::Output { | |
612 | SensorGridSupportGenerator{ | |
613 | base_sensor : self.base_sensor.clone(), | |
614 | grid : self.grid, | |
615 | weights : (&self.weights).$fn() | |
616 | } | |
617 | } | |
618 | } | |
619 | } | |
620 | } | |
621 | ||
622 | make_sensorgridsupportgenerator_unaryop!(Neg, neg); | |
623 | ||
624 | impl<'a, F, S, P, BT, const N : usize> Mapping<DVector<F>> | |
625 | for PreadjointHelper<'a, SensorGrid<F, S, P, BT, N>, RNDM<F,N>> | |
626 | where F : Float, | |
627 | BT : SensorGridBT<F, S, P, N>, | |
628 | S : Sensor<F, N>, | |
629 | P : Spread<F, N>, | |
630 | Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
631 | { |
35 | 632 | |
633 | type Codomain = SensorGridBTFN<F, S, P, BT, N>; | |
634 | ||
635 | fn apply<I : Instance<DVector<F>>>(&self, x : I) -> Self::Codomain { | |
636 | let fwd = &self.forward_op; | |
637 | let generator = SensorGridSupportGenerator{ | |
638 | base_sensor : fwd.base_sensor.clone(), | |
639 | grid : fwd.grid(), | |
640 | weights : x.own() | |
641 | }; | |
642 | BTFN::new_refresh(&fwd.bt, generator) | |
643 | } | |
644 | } | |
645 | ||
646 | impl<'a, F, S, P, BT, const N : usize> Linear<DVector<F>> | |
647 | for PreadjointHelper<'a, SensorGrid<F, S, P, BT, N>, RNDM<F,N>> | |
648 | where F : Float, | |
649 | BT : SensorGridBT<F, S, P, N>, | |
650 | S : Sensor<F, N>, | |
651 | P : Spread<F, N>, | |
652 | Convolution<S, P> : Spread<F, N> + LocalAnalysis<F, Bounds<F>, N>, | |
39
6316d68b58af
Merging adjustments, parameter tuning, etc.
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
653 | { } |
44 | 654 |