Mon, 06 Jan 2025 21:37:03 -0500
Attempt to do more Serialize / Deserialize but run into csv problems
0 | 1 | /*! |
2 | Experimental setups. | |
3 | */ | |
4 | ||
5 | //use numeric_literals::replace_float_literals; | |
6 | use serde::{Serialize, Deserialize}; | |
7 | use clap::ValueEnum; | |
8 | use std::collections::HashMap; | |
9 | use std::hash::{Hash, Hasher}; | |
10 | use std::collections::hash_map::DefaultHasher; | |
11 | ||
12 | use alg_tools::bisection_tree::*; | |
13 | use alg_tools::error::DynResult; | |
14 | use alg_tools::norms::Linfinity; | |
15 | ||
16 | use crate::ExperimentOverrides; | |
17 | use crate::kernels::*; | |
34
efa60bc4f743
Radon FB + sliding improvements
Tuomo Valkonen <tuomov@iki.fi>
parents:
25
diff
changeset
|
18 | use crate::kernels::SupportProductFirst as Prod; |
0 | 19 | use crate::pdps::PDPSConfig; |
20 | use crate::types::*; | |
21 | use crate::run::{ | |
22 | RunnableExperiment, | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
23 | ExperimentV2, |
35 | 24 | ExperimentBiased, |
0 | 25 | Named, |
26 | DefaultAlgorithm, | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
27 | AlgorithmConfig, |
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
28 | ProxTerm |
0 | 29 | }; |
30 | //use crate::fb::FBGenericConfig; | |
31 | use crate::rand_distr::{SerializableNormal, SaltAndPepper}; | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
32 | use crate::regularisation::Regularisation; |
35 | 33 | use alg_tools::euclidean::Euclidean; |
34 | use alg_tools::instance::Instance; | |
35 | use alg_tools::mapping::Mapping; | |
36 | use alg_tools::operator_arithmetic::{MappingSum, Weighted}; | |
0 | 37 | |
38 | /// Experiments shorthands, to be used with the command line parser | |
39 | ||
40 | #[derive(ValueEnum, Debug, Copy, Clone, Eq, PartialEq, Hash, Serialize, Deserialize)] | |
41 | #[allow(non_camel_case_types)] | |
42 | pub enum DefaultExperiment { | |
43 | /// One dimension, cut gaussian spread, 2-norm-squared data fidelity | |
44 | #[clap(name = "1d")] | |
45 | Experiment1D, | |
46 | /// One dimension, “fast” spread, 2-norm-squared data fidelity | |
47 | #[clap(name = "1d_fast")] | |
48 | Experiment1DFast, | |
49 | /// Two dimensions, cut gaussian spread, 2-norm-squared data fidelity | |
50 | #[clap(name = "2d")] | |
51 | Experiment2D, | |
52 | /// Two dimensions, “fast” spread, 2-norm-squared data fidelity | |
53 | #[clap(name = "2d_fast")] | |
54 | Experiment2DFast, | |
55 | /// One dimension, cut gaussian spread, 1-norm data fidelity | |
56 | #[clap(name = "1d_l1")] | |
57 | Experiment1D_L1, | |
58 | /// One dimension, ‘“fast” spread, 1-norm data fidelity | |
59 | #[clap(name = "1d_l1_fast")] | |
60 | Experiment1D_L1_Fast, | |
61 | /// Two dimensions, cut gaussian spread, 1-norm data fidelity | |
62 | #[clap(name = "2d_l1")] | |
63 | Experiment2D_L1, | |
64 | /// Two dimensions, “fast” spread, 1-norm data fidelity | |
65 | #[clap(name = "2d_l1_fast")] | |
66 | Experiment2D_L1_Fast, | |
35 | 67 | /// One dimension, “fast” spread, 2-norm-squared data fidelity with extra TV-regularised bias |
68 | #[clap(name = "1d_tv_fast")] | |
69 | Experiment1D_TV_Fast, | |
0 | 70 | } |
71 | ||
72 | macro_rules! make_float_constant { | |
73 | ($name:ident = $value:expr) => { | |
74 | #[derive(Debug, Copy, Eq, PartialEq, Clone, Serialize, Deserialize)] | |
75 | #[serde(into = "float")] | |
76 | struct $name; | |
77 | impl Into<float> for $name { | |
78 | #[inline] | |
79 | fn into(self) -> float { $value } | |
80 | } | |
81 | impl Constant for $name { | |
82 | type Type = float; | |
83 | fn value(&self) -> float { $value } | |
84 | } | |
85 | } | |
86 | } | |
87 | ||
88 | /// Ground-truth measure spike locations and magnitudes for 1D experiments | |
89 | static MU_TRUE_1D_BASIC : [(float, float); 4] = [ | |
90 | (0.10, 10.0), | |
91 | (0.30, 2.0), | |
92 | (0.70, 3.0), | |
93 | (0.80, 5.0) | |
94 | ]; | |
95 | ||
96 | /// Ground-truth measure spike locations and magnitudes for 2D experiments | |
97 | static MU_TRUE_2D_BASIC : [([float; 2], float); 4] = [ | |
98 | ([0.15, 0.15], 10.0), | |
99 | ([0.75, 0.45], 2.0), | |
100 | ([0.80, 0.50], 4.0), | |
101 | ([0.30, 0.70], 5.0) | |
102 | ]; | |
103 | ||
35 | 104 | /// The $\{0,1\}$-valued characteristic function of a ball as a [`Mapping`]. |
38
0f59c0d02e13
Attempt to do more Serialize / Deserialize but run into csv problems
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
105 | #[derive(Debug,Copy,Clone,Serialize,Deserialize,PartialEq)] |
0f59c0d02e13
Attempt to do more Serialize / Deserialize but run into csv problems
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
106 | #[serde(bound( |
0f59c0d02e13
Attempt to do more Serialize / Deserialize but run into csv problems
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
107 | serialize = "F : Serialize, |
0f59c0d02e13
Attempt to do more Serialize / Deserialize but run into csv problems
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
108 | Loc<F, N> : Serialize", |
0f59c0d02e13
Attempt to do more Serialize / Deserialize but run into csv problems
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
109 | deserialize = "F : for<'a> Deserialize<'a>, |
0f59c0d02e13
Attempt to do more Serialize / Deserialize but run into csv problems
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
110 | Loc<F, N> : for<'a> Deserialize<'a>", |
0f59c0d02e13
Attempt to do more Serialize / Deserialize but run into csv problems
Tuomo Valkonen <tuomov@iki.fi>
parents:
37
diff
changeset
|
111 | ))] |
35 | 112 | struct BallCharacteristic<F : Float, const N : usize> { |
113 | pub center : Loc<F, N>, | |
114 | pub radius : F, | |
115 | } | |
116 | ||
117 | impl<F : Float, const N : usize> Mapping<Loc<F, N>> for BallCharacteristic<F, N> { | |
118 | type Codomain =F; | |
119 | ||
120 | fn apply<I : Instance<Loc<F, N>>>(&self, i : I) -> F { | |
121 | if self.center.dist2(i) <= self.radius { | |
122 | F::ONE | |
123 | } else { | |
124 | F::ZERO | |
125 | } | |
126 | } | |
127 | } | |
128 | ||
0 | 129 | //#[replace_float_literals(F::cast_from(literal))] |
130 | impl DefaultExperiment { | |
131 | /// Convert the experiment shorthand into a runnable experiment configuration. | |
132 | pub fn get_experiment(&self, cli : &ExperimentOverrides<float>) -> DynResult<Box<dyn RunnableExperiment<float>>> { | |
133 | let name = "pointsource".to_string() | |
134 | + self.to_possible_value().unwrap().get_name(); | |
135 | ||
136 | let kernel_plot_width = 0.2; | |
137 | ||
138 | const BASE_SEED : u64 = 915373234; | |
139 | ||
140 | const N_SENSORS_1D : usize = 100; | |
141 | make_float_constant!(SensorWidth1D = 0.4/(N_SENSORS_1D as float)); | |
142 | ||
143 | const N_SENSORS_2D : usize = 16; | |
144 | make_float_constant!(SensorWidth2D = 0.4/(N_SENSORS_2D as float)); | |
145 | ||
146 | const N_SENSORS_2D_MORE : usize = 32; | |
147 | make_float_constant!(SensorWidth2DMore = 0.4/(N_SENSORS_2D_MORE as float)); | |
148 | ||
149 | make_float_constant!(Variance1 = 0.05.powi(2)); | |
150 | make_float_constant!(CutOff1 = 0.15); | |
151 | make_float_constant!(Hat1 = 0.16); | |
35 | 152 | make_float_constant!(HatBias = 0.05); |
0 | 153 | |
154 | // We use a different step length for PDPS in 2D experiments | |
155 | let pdps_2d = || { | |
156 | let τ0 = 3.0; | |
157 | PDPSConfig { | |
158 | τ0, | |
159 | σ0 : 0.99 / τ0, | |
160 | .. Default::default() | |
161 | } | |
162 | }; | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
163 | let defaults_2d = HashMap::from([ |
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
164 | (DefaultAlgorithm::PDPS, AlgorithmConfig::PDPS(pdps_2d(), ProxTerm::Wave)), |
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
165 | (DefaultAlgorithm::RadonPDPS, AlgorithmConfig::PDPS(pdps_2d(), ProxTerm::RadonSquared)) |
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
166 | ]); |
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
167 | |
0 | 168 | // We add a hash of the experiment name to the configured |
169 | // noise seed to not use the same noise for different experiments. | |
170 | let mut h = DefaultHasher::new(); | |
171 | name.hash(&mut h); | |
172 | let noise_seed = cli.noise_seed.unwrap_or(BASE_SEED) + h.finish(); | |
173 | ||
174 | use DefaultExperiment::*; | |
175 | Ok(match self { | |
176 | Experiment1D => { | |
177 | let base_spread = Gaussian { variance : Variance1 }; | |
178 | let spread_cutoff = BallIndicator { r : CutOff1, exponent : Linfinity }; | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
179 | Box::new(Named { name, data : ExperimentV2 { |
0 | 180 | domain : [[0.0, 1.0]].into(), |
181 | sensor_count : [N_SENSORS_1D], | |
25
79943be70720
Implement non-negativity constraints for the conditional gradient methods
Tuomo Valkonen <tuomov@iki.fi>
parents:
24
diff
changeset
|
182 | regularisation : Regularisation::NonnegRadon(cli.alpha.unwrap_or(0.09)), |
0 | 183 | noise_distr : SerializableNormal::new(0.0, cli.variance.unwrap_or(0.2))?, |
184 | dataterm : DataTerm::L2Squared, | |
185 | μ_hat : MU_TRUE_1D_BASIC.into(), | |
186 | sensor : BallIndicator { r : SensorWidth1D, exponent : Linfinity }, | |
187 | spread : Prod(spread_cutoff, base_spread), | |
188 | kernel : Prod(AutoConvolution(spread_cutoff), base_spread), | |
189 | kernel_plot_width, | |
190 | noise_seed, | |
191 | algorithm_defaults: HashMap::new(), | |
192 | }}) | |
193 | }, | |
194 | Experiment1DFast => { | |
195 | let base_spread = HatConv { radius : Hat1 }; | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
196 | Box::new(Named { name, data : ExperimentV2 { |
0 | 197 | domain : [[0.0, 1.0]].into(), |
198 | sensor_count : [N_SENSORS_1D], | |
25
79943be70720
Implement non-negativity constraints for the conditional gradient methods
Tuomo Valkonen <tuomov@iki.fi>
parents:
24
diff
changeset
|
199 | regularisation : Regularisation::NonnegRadon(cli.alpha.unwrap_or(0.06)), |
0 | 200 | noise_distr : SerializableNormal::new(0.0, cli.variance.unwrap_or(0.2))?, |
201 | dataterm : DataTerm::L2Squared, | |
202 | μ_hat : MU_TRUE_1D_BASIC.into(), | |
203 | sensor : BallIndicator { r : SensorWidth1D, exponent : Linfinity }, | |
204 | spread : base_spread, | |
205 | kernel : base_spread, | |
206 | kernel_plot_width, | |
207 | noise_seed, | |
208 | algorithm_defaults: HashMap::new(), | |
209 | }}) | |
210 | }, | |
211 | Experiment2D => { | |
212 | let base_spread = Gaussian { variance : Variance1 }; | |
213 | let spread_cutoff = BallIndicator { r : CutOff1, exponent : Linfinity }; | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
214 | Box::new(Named { name, data : ExperimentV2 { |
0 | 215 | domain : [[0.0, 1.0]; 2].into(), |
216 | sensor_count : [N_SENSORS_2D; 2], | |
25
79943be70720
Implement non-negativity constraints for the conditional gradient methods
Tuomo Valkonen <tuomov@iki.fi>
parents:
24
diff
changeset
|
217 | regularisation : Regularisation::NonnegRadon(cli.alpha.unwrap_or(0.19)), |
0 | 218 | noise_distr : SerializableNormal::new(0.0, cli.variance.unwrap_or(0.25))?, |
219 | dataterm : DataTerm::L2Squared, | |
220 | μ_hat : MU_TRUE_2D_BASIC.into(), | |
221 | sensor : BallIndicator { r : SensorWidth2D, exponent : Linfinity }, | |
222 | spread : Prod(spread_cutoff, base_spread), | |
223 | kernel : Prod(AutoConvolution(spread_cutoff), base_spread), | |
224 | kernel_plot_width, | |
225 | noise_seed, | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
226 | algorithm_defaults: defaults_2d, |
0 | 227 | }}) |
228 | }, | |
229 | Experiment2DFast => { | |
230 | let base_spread = HatConv { radius : Hat1 }; | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
231 | Box::new(Named { name, data : ExperimentV2 { |
0 | 232 | domain : [[0.0, 1.0]; 2].into(), |
233 | sensor_count : [N_SENSORS_2D; 2], | |
25
79943be70720
Implement non-negativity constraints for the conditional gradient methods
Tuomo Valkonen <tuomov@iki.fi>
parents:
24
diff
changeset
|
234 | regularisation : Regularisation::NonnegRadon(cli.alpha.unwrap_or(0.12)), |
0 | 235 | noise_distr : SerializableNormal::new(0.0, cli.variance.unwrap_or(0.15))?, //0.25 |
236 | dataterm : DataTerm::L2Squared, | |
237 | μ_hat : MU_TRUE_2D_BASIC.into(), | |
238 | sensor : BallIndicator { r : SensorWidth2D, exponent : Linfinity }, | |
239 | spread : base_spread, | |
240 | kernel : base_spread, | |
241 | kernel_plot_width, | |
242 | noise_seed, | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
243 | algorithm_defaults: defaults_2d, |
0 | 244 | }}) |
245 | }, | |
246 | Experiment1D_L1 => { | |
247 | let base_spread = Gaussian { variance : Variance1 }; | |
248 | let spread_cutoff = BallIndicator { r : CutOff1, exponent : Linfinity }; | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
249 | Box::new(Named { name, data : ExperimentV2 { |
0 | 250 | domain : [[0.0, 1.0]].into(), |
251 | sensor_count : [N_SENSORS_1D], | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
252 | regularisation : Regularisation::NonnegRadon(cli.alpha.unwrap_or(0.1)), |
0 | 253 | noise_distr : SaltAndPepper::new( |
254 | cli.salt_and_pepper.as_ref().map_or(0.6, |v| v[0]), | |
255 | cli.salt_and_pepper.as_ref().map_or(0.4, |v| v[1]) | |
256 | )?, | |
257 | dataterm : DataTerm::L1, | |
258 | μ_hat : MU_TRUE_1D_BASIC.into(), | |
259 | sensor : BallIndicator { r : SensorWidth1D, exponent : Linfinity }, | |
260 | spread : Prod(spread_cutoff, base_spread), | |
261 | kernel : Prod(AutoConvolution(spread_cutoff), base_spread), | |
262 | kernel_plot_width, | |
263 | noise_seed, | |
264 | algorithm_defaults: HashMap::new(), | |
265 | }}) | |
266 | }, | |
267 | Experiment1D_L1_Fast => { | |
268 | let base_spread = HatConv { radius : Hat1 }; | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
269 | Box::new(Named { name, data : ExperimentV2 { |
0 | 270 | domain : [[0.0, 1.0]].into(), |
271 | sensor_count : [N_SENSORS_1D], | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
272 | regularisation : Regularisation::NonnegRadon(cli.alpha.unwrap_or(0.12)), |
0 | 273 | noise_distr : SaltAndPepper::new( |
274 | cli.salt_and_pepper.as_ref().map_or(0.6, |v| v[0]), | |
275 | cli.salt_and_pepper.as_ref().map_or(0.4, |v| v[1]) | |
276 | )?, | |
277 | dataterm : DataTerm::L1, | |
278 | μ_hat : MU_TRUE_1D_BASIC.into(), | |
279 | sensor : BallIndicator { r : SensorWidth1D, exponent : Linfinity }, | |
280 | spread : base_spread, | |
281 | kernel : base_spread, | |
282 | kernel_plot_width, | |
283 | noise_seed, | |
284 | algorithm_defaults: HashMap::new(), | |
285 | }}) | |
286 | }, | |
287 | Experiment2D_L1 => { | |
288 | let base_spread = Gaussian { variance : Variance1 }; | |
289 | let spread_cutoff = BallIndicator { r : CutOff1, exponent : Linfinity }; | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
290 | Box::new(Named { name, data : ExperimentV2 { |
0 | 291 | domain : [[0.0, 1.0]; 2].into(), |
292 | sensor_count : [N_SENSORS_2D; 2], | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
293 | regularisation : Regularisation::NonnegRadon(cli.alpha.unwrap_or(0.35)), |
0 | 294 | noise_distr : SaltAndPepper::new( |
295 | cli.salt_and_pepper.as_ref().map_or(0.8, |v| v[0]), | |
296 | cli.salt_and_pepper.as_ref().map_or(0.2, |v| v[1]) | |
297 | )?, | |
298 | dataterm : DataTerm::L1, | |
299 | μ_hat : MU_TRUE_2D_BASIC.into(), | |
300 | sensor : BallIndicator { r : SensorWidth2D, exponent : Linfinity }, | |
301 | spread : Prod(spread_cutoff, base_spread), | |
302 | kernel : Prod(AutoConvolution(spread_cutoff), base_spread), | |
303 | kernel_plot_width, | |
304 | noise_seed, | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
305 | algorithm_defaults: defaults_2d, |
0 | 306 | }}) |
307 | }, | |
308 | Experiment2D_L1_Fast => { | |
309 | let base_spread = HatConv { radius : Hat1 }; | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
310 | Box::new(Named { name, data : ExperimentV2 { |
0 | 311 | domain : [[0.0, 1.0]; 2].into(), |
312 | sensor_count : [N_SENSORS_2D; 2], | |
24
d29d1fcf5423
Support arbitrary regularisation terms; implement non-positivity-constrained regularisation.
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
313 | regularisation : Regularisation::NonnegRadon(cli.alpha.unwrap_or(0.40)), |
0 | 314 | noise_distr : SaltAndPepper::new( |
315 | cli.salt_and_pepper.as_ref().map_or(0.8, |v| v[0]), | |
316 | cli.salt_and_pepper.as_ref().map_or(0.2, |v| v[1]) | |
317 | )?, | |
318 | dataterm : DataTerm::L1, | |
319 | μ_hat : MU_TRUE_2D_BASIC.into(), | |
320 | sensor : BallIndicator { r : SensorWidth2D, exponent : Linfinity }, | |
321 | spread : base_spread, | |
322 | kernel : base_spread, | |
323 | kernel_plot_width, | |
324 | noise_seed, | |
37
c5d8bd1a7728
Generic proximal penalty support
Tuomo Valkonen <tuomov@iki.fi>
parents:
35
diff
changeset
|
325 | algorithm_defaults: defaults_2d, |
0 | 326 | }}) |
327 | }, | |
35 | 328 | Experiment1D_TV_Fast => { |
329 | let base_spread = HatConv { radius : HatBias }; | |
330 | Box::new(Named { name, data : ExperimentBiased { | |
331 | λ : 0.02, | |
332 | bias : MappingSum::new([ | |
333 | Weighted::new(1.0, BallCharacteristic{ center : 0.3.into(), radius : 0.2 }), | |
334 | Weighted::new(0.5, BallCharacteristic{ center : 0.6.into(), radius : 0.3 }), | |
335 | ]), | |
336 | base : ExperimentV2 { | |
337 | domain : [[0.0, 1.0]].into(), | |
338 | sensor_count : [N_SENSORS_1D], | |
339 | regularisation : Regularisation::NonnegRadon(cli.alpha.unwrap_or(0.2)), | |
340 | noise_distr : SerializableNormal::new(0.0, cli.variance.unwrap_or(0.1))?, | |
341 | dataterm : DataTerm::L2Squared, | |
342 | μ_hat : MU_TRUE_1D_BASIC.into(), | |
343 | sensor : BallIndicator { r : SensorWidth1D, exponent : Linfinity }, | |
344 | spread : base_spread, | |
345 | kernel : base_spread, | |
346 | kernel_plot_width, | |
347 | noise_seed, | |
348 | algorithm_defaults: HashMap::new(), | |
349 | }, | |
350 | }}) | |
351 | }, | |
0 | 352 | }) |
353 | } | |
354 | } | |
355 |