Mon, 21 Oct 2024 23:07:01 -0500
Basic face image export
0 | 1 | |
2 | use core::f64; | |
3 | ||
4 | use alg_tools::loc::Loc; | |
5 | use alg_tools::norms::{Norm, L2}; | |
7 | 6 | use crate::manifold::{ManifoldPoint, EmbeddedManifoldPoint}; |
0 | 7 | |
8 | #[derive(Copy, Clone, Debug, Eq, PartialEq)] | |
9 | pub enum Face {F1, F2, F3, F4, F5, F6} | |
10 | use Face::*; | |
11 | ||
12 | pub type Point = Loc<f64, 2>; | |
13 | ||
14 | pub type AdjacentFaces = [Face; 4]; | |
15 | ||
3 | 16 | #[derive(Clone, Debug)] |
0 | 17 | pub enum Path { |
18 | Direct { destination : Face }, | |
19 | Indirect { destination : Face, intermediate : Face }, | |
20 | } | |
21 | ||
22 | /// An iterator over paths on a cube, from a source face to a destination face. | |
23 | #[derive(Clone, Debug)] | |
24 | pub enum PathIter { | |
25 | Direct(Face), | |
26 | Indirect{ destination : Face, intermediate : AdjacentFaces, current : usize}, | |
27 | Exhausted, | |
28 | } | |
29 | ||
30 | impl std::iter::Iterator for PathIter { | |
31 | type Item = Path; | |
32 | ||
33 | fn next(&mut self) -> Option<Self::Item> { | |
34 | use PathIter::*; | |
35 | match self { | |
36 | &mut Exhausted => None, | |
37 | &mut Direct(destination) => { | |
38 | *self = Exhausted; | |
39 | Some(Path::Direct { destination }) | |
40 | }, | |
41 | &mut Indirect{destination, intermediate : ref i, ref mut current} => { | |
42 | if *current < i.len() { | |
43 | let intermediate = i[*current]; | |
44 | *current += 1; | |
45 | Some(Path::Indirect{ destination, intermediate }) | |
46 | } else { | |
47 | *self = Exhausted; | |
48 | None | |
49 | } | |
50 | } | |
51 | } | |
52 | } | |
53 | } | |
54 | ||
11 | 55 | impl std::fmt::Display for Face { |
56 | fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { | |
57 | let s = match *self { | |
58 | F1 => "F1", | |
59 | F2 => "F2", | |
60 | F3 => "F3", | |
61 | F4 => "F4", | |
62 | F5 => "F5", | |
63 | F6 => "F6", | |
64 | }; | |
65 | write!(f, "{}", s) | |
66 | } | |
67 | } | |
0 | 68 | |
69 | impl Face { | |
11 | 70 | /// Return an aray of all faces |
71 | pub fn all() -> [Face; 6] { | |
72 | [F1, F2, F3, F4, F5, F6] | |
73 | } | |
74 | ||
3 | 75 | /// Returns an array of the four faces adjacent to `self` in the |
76 | /// order [left, right, down, up] in the `self`-relative unfolding. | |
0 | 77 | pub fn adjacent_faces(&self) -> AdjacentFaces { |
78 | match *self { | |
3 | 79 | F1 => [F3, F2, F4, F5], |
80 | F2 => [F4, F5, F1, F6], | |
81 | F3 => [F5, F4, F1, F6], | |
82 | F4 => [F3, F2, F1, F6], | |
83 | F5 => [F2, F3, F1, F6], | |
84 | F6 => [F3, F2, F4, F5], | |
0 | 85 | } |
86 | } | |
87 | ||
88 | /// Returns the face opposing `self`. | |
89 | pub fn opposing_face(&self) -> Face { | |
90 | match *self { | |
91 | F1 => F6, | |
92 | F2 => F3, | |
93 | F3 => F2, | |
3 | 94 | F4 => F5, |
0 | 95 | F5 => F4, |
96 | F6 => F1, | |
97 | } | |
98 | } | |
99 | ||
100 | /// Converts a point on an adjacent face to the coordinate system of `self`. | |
101 | pub fn convert_adjacent(&self, adjacent : Face, p: &Point) -> Option<Point> { | |
102 | let Loc([x, y]) = *p; | |
103 | let mk = |x, y| Some(Loc([x, y])); | |
104 | match adjacent { | |
105 | F1 => match *self { | |
106 | F2 => mk(y, x - 1.0), | |
107 | F3 => mk(1.0 - y, -x), | |
108 | F4 => mk(x, -y), | |
109 | F5 => mk(1.0 - x, y - 1.0), | |
110 | F1 => mk(x, y), | |
111 | F6 => None, | |
112 | }, | |
113 | F2 => match *self { | |
114 | F1 => mk(y + 1.0, x), | |
115 | F4 => mk(x + 1.0, y), | |
116 | F5 => mk(x - 1.0, y), | |
117 | F6 => mk(2.0 - y, x), | |
118 | F2 => mk(x, y), | |
119 | F3 => None, | |
120 | }, | |
121 | F3 => match *self { | |
122 | F1 => mk(-y, 1.0 - x), | |
123 | F4 => mk(x - 1.0, y), | |
124 | F5 => mk(x + 1.0, y), | |
125 | F6 => mk(y - 1.0, 1.0 - x), | |
126 | F3 => mk(x, y), | |
127 | F2 => None, | |
128 | }, | |
129 | F4 => match *self { | |
130 | F1 => mk(x, -y), | |
131 | F2 => mk(x - 1.0, y), | |
132 | F3 => mk(x + 1.0, y), | |
133 | F6 => mk(x, y - 1.0), | |
134 | F4 => mk(x, y), | |
135 | F5 => None, | |
136 | }, | |
137 | F5 => match *self { | |
138 | F1 => mk(1.0 -x, y + 1.0), | |
139 | F2 => mk(x + 1.0, y), | |
140 | F3 => mk(x - 1.0, y), | |
141 | F6 => mk(1.0 -x, 2.0 - y), | |
142 | F5 => mk(x, y), | |
143 | F4 => None, | |
144 | }, | |
145 | F6 => match *self { | |
146 | F2 => mk(y, 2.0 - x), | |
147 | F3 => mk(1.0 - y, x + 1.0), | |
148 | F4 => mk(x, y + 1.0), | |
149 | F5 => mk(1.0 - x, 2.0 - y), | |
150 | F6 => mk(x, y), | |
151 | F1 => None, | |
152 | } | |
153 | } | |
154 | } | |
155 | ||
156 | /// Converts a point behind a path to the coordinate system of `self`. | |
157 | pub fn convert(&self, path : &Path, p: &Point) -> Point { | |
158 | use Path::*; | |
3 | 159 | //dbg!(*self, path); |
0 | 160 | match path { |
161 | &Direct{ destination : d} => self.convert_adjacent(d, p), | |
162 | &Indirect{ destination : d, intermediate : i } | |
3 | 163 | => {self.convert_adjacent(i, &i.convert_adjacent(d, p).unwrap())} |
0 | 164 | }.unwrap() |
165 | } | |
166 | ||
167 | ||
168 | /// Returns an iterator over all the paths from `self` to `other`. | |
169 | fn paths(&self, other : Face) -> PathIter { | |
3 | 170 | //dbg!(self, other); |
0 | 171 | if self.opposing_face() == other { |
172 | PathIter::Indirect { | |
173 | intermediate : self.adjacent_faces(), | |
174 | destination : other, | |
175 | current : 0 | |
176 | } | |
177 | } else { | |
178 | PathIter::Direct(other) | |
179 | } | |
180 | } | |
3 | 181 | |
182 | pub fn is_in_face(&self, p: &Point) -> bool { | |
183 | p.iter().map(|t| t.abs()).all(|t| 0.0 <= t && t <= 1.0) | |
184 | } | |
185 | ||
186 | pub fn find_crossing(&self, p : &Point) -> Face { | |
187 | let &Loc([x, y]) = p; | |
188 | use std::cmp::Ordering::*; | |
189 | let crossing = |t| match (0.0 <= t, t<=1.0) { | |
190 | (false, _) => Less, | |
191 | (_, false) => Greater, | |
192 | _ => Equal, | |
193 | }; | |
194 | ||
195 | // TODO: how to properly handle corners? Just throw an error? | |
196 | match (crossing(x), crossing(y)) { | |
197 | (Equal, Equal) => *self, | |
198 | (Less, _) => self.adjacent_faces()[0], | |
199 | (Greater, _) => self.adjacent_faces()[1], | |
200 | (Equal, Less) => self.adjacent_faces()[2], | |
201 | (Equal, Greater) => self.adjacent_faces()[3], | |
202 | } | |
203 | } | |
7 | 204 | |
205 | /// Get embedded 3D coordinates | |
206 | pub fn embedded_coords(&self, p : &Point) -> Loc<f64, 3> { | |
207 | let &Loc([x, y]) = p; | |
208 | Loc(match *self { | |
209 | F1 => [x, y, 0.0], | |
210 | F2 => [1.0, x, y], | |
211 | F3 => [0.0, 1.0-x, y], | |
212 | F4 => [x, 0.0, y], | |
213 | F5 => [1.0 - x, 1.0, y], | |
214 | F6 => [x, y, 1.0], | |
215 | }) | |
216 | } | |
0 | 217 | } |
218 | ||
219 | #[derive(Clone, Debug, PartialEq)] | |
220 | pub struct OnCube { | |
221 | face : Face, | |
222 | point : Point, | |
223 | } | |
224 | ||
5 | 225 | impl OnCube { |
7 | 226 | /// Creates a new point on the cube, given a face and face-relative coordinates |
227 | /// in [0, 1]^2 | |
228 | pub fn new(face : Face, point : Point) -> Self { | |
229 | assert!(face.is_in_face(&point)); | |
230 | OnCube { face, point } | |
231 | } | |
232 | ||
5 | 233 | /// Calculates both the logarithmic map and distance to another point |
234 | fn log_dist(&self, other : &Self) -> (<Self as ManifoldPoint>::Tangent, f64) { | |
235 | let mut best_len = f64::INFINITY; | |
236 | let mut best_tan = Loc([0.0, 0.0]); | |
237 | for path in self.face.paths(other.face) { | |
238 | let tan = self.face.convert(&path, &other.point) - &self.point; | |
239 | let len = tan.norm(L2); | |
240 | if len < best_len { | |
241 | best_tan = tan; | |
242 | best_len = len; | |
243 | } | |
244 | } | |
245 | (best_tan, best_len) | |
246 | } | |
247 | } | |
248 | ||
7 | 249 | |
250 | impl EmbeddedManifoldPoint for OnCube { | |
251 | type EmbeddedCoords = Loc<f64, 3>; | |
252 | ||
253 | /// Get embedded 3D coordinates | |
254 | fn embedded_coords(&self) -> Loc<f64, 3> { | |
255 | self.face.embedded_coords(&self.point) | |
256 | } | |
257 | } | |
258 | ||
0 | 259 | impl ManifoldPoint for OnCube { |
260 | type Tangent = Point; | |
261 | ||
8 | 262 | fn exp(self, tangent : &Self::Tangent) -> Self { |
3 | 263 | let mut face = self.face; |
264 | let mut point = self.point + tangent; | |
265 | loop { | |
266 | let next_face = face.find_crossing(&point); | |
267 | if next_face == face { | |
268 | break | |
269 | } | |
270 | point = next_face.convert_adjacent(face, &point).unwrap(); | |
271 | face = next_face; | |
272 | } | |
273 | OnCube { face, point } | |
0 | 274 | } |
275 | ||
276 | fn log(&self, other : &Self) -> Self::Tangent { | |
5 | 277 | self.log_dist(other).0 |
278 | } | |
279 | ||
280 | fn dist_to(&self, other : &Self) -> f64 { | |
281 | self.log_dist(other).1 | |
0 | 282 | } |
6
df9628092285
Add a zero function on manifolds
Tuomo Valkonen <tuomov@iki.fi>
parents:
5
diff
changeset
|
283 | |
df9628092285
Add a zero function on manifolds
Tuomo Valkonen <tuomov@iki.fi>
parents:
5
diff
changeset
|
284 | fn tangent_origin(&self) -> Self::Tangent { |
df9628092285
Add a zero function on manifolds
Tuomo Valkonen <tuomov@iki.fi>
parents:
5
diff
changeset
|
285 | Loc([0.0, 0.0]) |
df9628092285
Add a zero function on manifolds
Tuomo Valkonen <tuomov@iki.fi>
parents:
5
diff
changeset
|
286 | } |
0 | 287 | } |
288 | ||
289 | #[cfg(test)] | |
290 | mod tests { | |
291 | use super::*; | |
292 | ||
293 | #[test] | |
10 | 294 | fn convert_adjacent() { |
295 | let point = Loc([0.4, 0.6]); | |
296 | ||
297 | for f1 in [F1, F2, F3, F4, F5, F6] { | |
298 | for f2 in [F1, F2, F3, F4, F5, F6] { | |
299 | println!("{:?}-{:?}", f1, f2); | |
300 | match f1.convert_adjacent(f2, &point) { | |
301 | None => assert_eq!(f2.opposing_face(), f1), | |
302 | Some(q) => { | |
303 | match f2.convert_adjacent(f1, &q) { | |
304 | None => assert_eq!(f1.opposing_face(), f2), | |
305 | Some(p) => assert!((p-&point).norm(L2) < 1e-9), | |
306 | } | |
307 | } | |
308 | } | |
309 | } | |
310 | } | |
311 | } | |
312 | ||
313 | // This will fail, as different return path does not guarantee | |
314 | // that a point outside the face will be returned to its point of origin. | |
315 | // #[test] | |
316 | // fn convert_paths() { | |
317 | // let point = Loc([0.4, 0.6]); | |
318 | ||
319 | // for f1 in [F1, F2, F3, F4, F5, F6] { | |
320 | // for f2 in [F1, F2, F3, F4, F5, F6] { | |
321 | // for p1 in f2.paths(f1) { | |
322 | // for p2 in f1.paths(f2) { | |
323 | // println!("{:?}-{:?}; {:?} {:?}", f1, f2, p1, p2); | |
324 | // let v = &f2.convert(&p1, &point); | |
325 | // let q = f1.convert(&p2, v); | |
326 | // assert!((q-&point).norm(L2) < 1e-9, | |
327 | // "norm({}-{}) ≥ 1e-9 (dest {})", q, &point, &v); | |
328 | // } | |
329 | // } | |
330 | // } | |
331 | // } | |
332 | // } | |
333 | ||
334 | #[test] | |
335 | fn log_adjacent() { | |
0 | 336 | let p1 = OnCube{ face : F1, point : Loc([0.5, 0.5])}; |
337 | let p2 = OnCube{ face : F2, point : Loc([0.5, 0.5])}; | |
338 | ||
339 | assert_eq!(p1.log(&p2).norm(L2), 1.0); | |
340 | } | |
341 | ||
342 | #[test] | |
10 | 343 | fn log_opposing_equal() { |
0 | 344 | let p1 = OnCube{ face : F1, point : Loc([0.5, 0.5])}; |
345 | let p2 = OnCube{ face : F6, point : Loc([0.5, 0.5])}; | |
346 | ||
347 | assert_eq!(p1.log(&p2).norm(L2), 2.0); | |
348 | } | |
349 | ||
350 | #[test] | |
10 | 351 | fn log_opposing_unique_shortest() { |
0 | 352 | let p1 = OnCube{ face : F1, point : Loc([0.3, 0.25])}; |
353 | let p2 = OnCube{ face : F6, point : Loc([0.3, 0.25])}; | |
354 | ||
355 | assert_eq!(p1.log(&p2).norm(L2), 1.5); | |
356 | } | |
357 | } | |
358 |