--- a/src/nalgebra_support.rs Sat Dec 21 23:32:20 2024 -0500 +++ b/src/nalgebra_support.rs Sun Dec 22 14:54:46 2024 -0500 @@ -1,7 +1,7 @@ /*! Integration with nalgebra. -This module mainly implements [`Euclidean`], [`Norm`], [`Dot`], [`Linear`], etc. for [`nalgebra`] +This module mainly implements [`Euclidean`], [`Norm`], [`Linear`], etc. for [`nalgebra`] matrices and vectors. It also provides [`ToNalgebraRealField`] as a vomit-inducingly ugly workaround to nalgebra force-feeding its own versions of the same basic mathematical methods on `f32` and `f64` as @@ -153,20 +153,6 @@ } } -impl<E,M,S,Si> Dot<Vector<E,M,Si>,E> -for Vector<E,M,S> -where M : Dim, - E : Float + Scalar + Zero + One, - S : Storage<E,M>, - Si : Storage<E,M>, - DefaultAllocator : Allocator<M> { - - #[inline] - fn dot(&self, other : &Vector<E,M,Si>) -> E { - Vector::<E,M,S>::dot(self, other) - } -} - /// This function is [`nalgebra::EuclideanNorm::metric_distance`] without the `sqrt`. #[inline] fn metric_distance_squared<T, R1, C1, S1, R2, C2, S2>( @@ -200,7 +186,12 @@ DefaultAllocator : Allocator<M> { type Output = OVector<E, M>; - + + #[inline] + fn dot<I : Instance<Self>>(&self, other : I) -> E { + Vector::<E,M,S>::dot(self, other.ref_instance()) + } + #[inline] fn norm2_squared(&self) -> E { Vector::<E,M,S>::norm_squared(self)