1 /*! |
1 /*! |
2 Integration with nalgebra. |
2 Integration with nalgebra. |
3 |
3 |
4 This module mainly implements [`Euclidean`], [`Norm`], [`Dot`], [`Linear`], etc. for [`nalgebra`] |
4 This module mainly implements [`Euclidean`], [`Norm`], [`Linear`], etc. for [`nalgebra`] |
5 matrices and vectors. |
5 matrices and vectors. |
6 It also provides [`ToNalgebraRealField`] as a vomit-inducingly ugly workaround to nalgebra |
6 It also provides [`ToNalgebraRealField`] as a vomit-inducingly ugly workaround to nalgebra |
7 force-feeding its own versions of the same basic mathematical methods on `f32` and `f64` as |
7 force-feeding its own versions of the same basic mathematical methods on `f32` and `f64` as |
8 [`num_traits`] does. |
8 [`num_traits`] does. |
9 */ |
9 */ |
148 type Adjoint<'a> = OMatrix<E,M,N> where SM : 'a; |
148 type Adjoint<'a> = OMatrix<E,M,N> where SM : 'a; |
149 |
149 |
150 #[inline] |
150 #[inline] |
151 fn adjoint(&self) -> Self::Adjoint<'_> { |
151 fn adjoint(&self) -> Self::Adjoint<'_> { |
152 Matrix::adjoint(self) |
152 Matrix::adjoint(self) |
153 } |
|
154 } |
|
155 |
|
156 impl<E,M,S,Si> Dot<Vector<E,M,Si>,E> |
|
157 for Vector<E,M,S> |
|
158 where M : Dim, |
|
159 E : Float + Scalar + Zero + One, |
|
160 S : Storage<E,M>, |
|
161 Si : Storage<E,M>, |
|
162 DefaultAllocator : Allocator<M> { |
|
163 |
|
164 #[inline] |
|
165 fn dot(&self, other : &Vector<E,M,Si>) -> E { |
|
166 Vector::<E,M,S>::dot(self, other) |
|
167 } |
153 } |
168 } |
154 } |
169 |
155 |
170 /// This function is [`nalgebra::EuclideanNorm::metric_distance`] without the `sqrt`. |
156 /// This function is [`nalgebra::EuclideanNorm::metric_distance`] without the `sqrt`. |
171 #[inline] |
157 #[inline] |
198 S : StorageMut<E,M> + Clone, |
184 S : StorageMut<E,M> + Clone, |
199 E : Float + Scalar + Zero + One + RealField, |
185 E : Float + Scalar + Zero + One + RealField, |
200 DefaultAllocator : Allocator<M> { |
186 DefaultAllocator : Allocator<M> { |
201 |
187 |
202 type Output = OVector<E, M>; |
188 type Output = OVector<E, M>; |
203 |
189 |
|
190 #[inline] |
|
191 fn dot<I : Instance<Self>>(&self, other : I) -> E { |
|
192 Vector::<E,M,S>::dot(self, other.ref_instance()) |
|
193 } |
|
194 |
204 #[inline] |
195 #[inline] |
205 fn norm2_squared(&self) -> E { |
196 fn norm2_squared(&self) -> E { |
206 Vector::<E,M,S>::norm_squared(self) |
197 Vector::<E,M,S>::norm_squared(self) |
207 } |
198 } |
208 |
199 |