--- a/src/nalgebra_support.rs Tue Feb 20 12:33:16 2024 -0500 +++ b/src/nalgebra_support.rs Mon Feb 03 19:22:16 2025 -0500 @@ -1,7 +1,7 @@ /*! Integration with nalgebra. -This module mainly implements [`Euclidean`], [`Norm`], [`Dot`], [`Linear`], etc. for [`nalgebra`] +This module mainly implements [`Euclidean`], [`Norm`], [`Linear`], etc. for [`nalgebra`] matrices and vectors. It also provides [`ToNalgebraRealField`] as a vomit-inducingly ugly workaround to nalgebra force-feeding its own versions of the same basic mathematical methods on `f32` and `f64` as @@ -10,10 +10,9 @@ use nalgebra::{ Matrix, Storage, StorageMut, OMatrix, Dim, DefaultAllocator, Scalar, - ClosedMul, ClosedAdd, SimdComplexField, Vector, OVector, RealField, + ClosedAddAssign, ClosedMulAssign, SimdComplexField, Vector, OVector, RealField, LpNorm, UniformNorm }; -use nalgebra::Norm as NalgebraNorm; use nalgebra::base::constraint::{ ShapeConstraint, SameNumberOfRows, SameNumberOfColumns }; @@ -23,102 +22,127 @@ use num_traits::identities::{Zero, One}; use crate::linops::*; use crate::euclidean::*; +use crate::mapping::{Space, BasicDecomposition}; use crate::types::Float; use crate::norms::*; +use crate::instance::Instance; -impl<SM,SV,N,M,K,E> Apply<Matrix<E,M,K,SV>> for Matrix<E,N,M,SM> -where SM: Storage<E,N,M>, SV: Storage<E,M,K>, - N : Dim, M : Dim, K : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One, - DefaultAllocator : Allocator<E,N,K>, - DefaultAllocator : Allocator<E,M,K>, - DefaultAllocator : Allocator<E,N,M>, - DefaultAllocator : Allocator<E,M,N> { - type Output = OMatrix<E,N,K>; +impl<SM,N,M,E> Space for Matrix<E,N,M,SM> +where + SM: Storage<E,N,M> + Clone, + N : Dim, M : Dim, E : Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign, + DefaultAllocator : Allocator<N,M>, +{ + type Decomp = BasicDecomposition; +} + +impl<SM,SV,N,M,K,E> Mapping<Matrix<E,M,K,SV>> for Matrix<E,N,M,SM> +where SM: Storage<E,N,M>, SV: Storage<E,M,K> + Clone, + N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign, + DefaultAllocator : Allocator<N,K>, + DefaultAllocator : Allocator<M,K>, + DefaultAllocator : Allocator<N,M>, + DefaultAllocator : Allocator<M,N> { + type Codomain = OMatrix<E,N,K>; #[inline] - fn apply(&self, x : Matrix<E,M,K,SV>) -> Self::Output { - self.mul(x) + fn apply<I : Instance<Matrix<E,M,K,SV>>>( + &self, x : I + ) -> Self::Codomain { + x.either(|owned| self.mul(owned), |refr| self.mul(refr)) } } -impl<'a, SM,SV,N,M,K,E> Apply<&'a Matrix<E,M,K,SV>> for Matrix<E,N,M,SM> -where SM: Storage<E,N,M>, SV: Storage<E,M,K>, - N : Dim, M : Dim, K : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One, - DefaultAllocator : Allocator<E,N,K>, - DefaultAllocator : Allocator<E,M,K>, - DefaultAllocator : Allocator<E,N,M>, - DefaultAllocator : Allocator<E,M,N> { - type Output = OMatrix<E,N,K>; - - #[inline] - fn apply(&self, x : &'a Matrix<E,M,K,SV>) -> Self::Output { - self.mul(x) - } -} impl<'a, SM,SV,N,M,K,E> Linear<Matrix<E,M,K,SV>> for Matrix<E,N,M,SM> -where SM: Storage<E,N,M>, SV: Storage<E,M,K>, - N : Dim, M : Dim, K : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One, - DefaultAllocator : Allocator<E,N,K>, - DefaultAllocator : Allocator<E,M,K>, - DefaultAllocator : Allocator<E,N,M>, - DefaultAllocator : Allocator<E,M,N> { - type Codomain = OMatrix<E,N,K>; +where SM: Storage<E,N,M>, SV: Storage<E,M,K> + Clone, + N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign, + DefaultAllocator : Allocator<N,K>, + DefaultAllocator : Allocator<M,K>, + DefaultAllocator : Allocator<N,M>, + DefaultAllocator : Allocator<M,N> { } impl<SM,SV1,SV2,N,M,K,E> GEMV<E, Matrix<E,M,K,SV1>, Matrix<E,N,K,SV2>> for Matrix<E,N,M,SM> -where SM: Storage<E,N,M>, SV1: Storage<E,M,K>, SV2: StorageMut<E,N,K>, - N : Dim, M : Dim, K : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One + Float, - DefaultAllocator : Allocator<E,N,K>, - DefaultAllocator : Allocator<E,M,K>, - DefaultAllocator : Allocator<E,N,M>, - DefaultAllocator : Allocator<E,M,N> { +where SM: Storage<E,N,M>, SV1: Storage<E,M,K> + Clone, SV2: StorageMut<E,N,K>, + N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + Float, + DefaultAllocator : Allocator<N,K>, + DefaultAllocator : Allocator<M,K>, + DefaultAllocator : Allocator<N,M>, + DefaultAllocator : Allocator<M,N> { #[inline] - fn gemv(&self, y : &mut Matrix<E,N,K,SV2>, α : E, x : &Matrix<E,M,K,SV1>, β : E) { - Matrix::gemm(y, α, self, x, β) + fn gemv<I : Instance<Matrix<E,M,K,SV1>>>( + &self, y : &mut Matrix<E,N,K,SV2>, α : E, x : I, β : E + ) { + x.eval(|x̃| Matrix::gemm(y, α, self, x̃, β)) } #[inline] - fn apply_mut<'a>(&self, y : &mut Matrix<E,N,K,SV2>, x : &Matrix<E,M,K,SV1>) { - self.mul_to(x, y) + fn apply_mut<'a, I : Instance<Matrix<E,M,K,SV1>>>(&self, y : &mut Matrix<E,N,K,SV2>, x : I) { + x.eval(|x̃| self.mul_to(x̃, y)) } } impl<SM,SV1,M,E> AXPY<E, Vector<E,M,SV1>> for Vector<E,M,SM> -where SM: StorageMut<E,M>, SV1: Storage<E,M>, - M : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One + Float, - DefaultAllocator : Allocator<E,M> { +where SM: StorageMut<E,M> + Clone, SV1: Storage<E,M> + Clone, + M : Dim, E : Scalar + Zero + One + Float, + DefaultAllocator : Allocator<M> { + type Owned = OVector<E, M>; #[inline] - fn axpy(&mut self, α : E, x : &Vector<E,M,SV1>, β : E) { - Matrix::axpy(self, α, x, β) + fn axpy<I : Instance<Vector<E,M,SV1>>>(&mut self, α : E, x : I, β : E) { + x.eval(|x̃| Matrix::axpy(self, α, x̃, β)) + } + + #[inline] + fn copy_from<I : Instance<Vector<E,M,SV1>>>(&mut self, y : I) { + y.eval(|ỹ| Matrix::copy_from(self, ỹ)) + } + + #[inline] + fn set_zero(&mut self) { + self.iter_mut().for_each(|e| *e = E::ZERO); } #[inline] - fn copy_from(&mut self, y : &Vector<E,M,SV1>) { - Matrix::copy_from(self, y) + fn similar_origin(&self) -> Self::Owned { + OVector::zeros_generic(M::from_usize(self.len()), Const) } } +/* Implemented automatically as Euclidean. +impl<SM,M,E> Projection<E, L2> for Vector<E,M,SM> +where SM: StorageMut<E,M> + Clone, + M : Dim, E : Scalar + Zero + One + Float + RealField, + DefaultAllocator : Allocator<M> { + #[inline] + fn proj_ball_mut(&mut self, ρ : E, _ : L2) { + let n = self.norm(L2); + if n > ρ { + self.iter_mut().for_each(|v| *v *= ρ/n) + } + } +}*/ + impl<SM,M,E> Projection<E, Linfinity> for Vector<E,M,SM> -where SM: StorageMut<E,M>, - M : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One + Float + RealField, - DefaultAllocator : Allocator<E,M> { +where SM: StorageMut<E,M> + Clone, + M : Dim, E : Scalar + Zero + One + Float + RealField, + DefaultAllocator : Allocator<M> { #[inline] fn proj_ball_mut(&mut self, ρ : E, _ : Linfinity) { self.iter_mut().for_each(|v| *v = num_traits::clamp(*v, -ρ, ρ)) } } -impl<'own,SV1,SV2,SM,N,M,K,E> Adjointable<Matrix<E,M,K,SV1>,Matrix<E,N,K,SV2>> +impl<'own,SV1,SV2,SM,N,M,K,E> Adjointable<Matrix<E,M,K,SV1>, Matrix<E,N,K,SV2>> for Matrix<E,N,M,SM> -where SM: Storage<E,N,M>, SV1: Storage<E,M,K>, SV2: Storage<E,N,K>, - N : Dim, M : Dim, K : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One + SimdComplexField, - DefaultAllocator : Allocator<E,N,K>, - DefaultAllocator : Allocator<E,M,K>, - DefaultAllocator : Allocator<E,N,M>, - DefaultAllocator : Allocator<E,M,N> { +where SM: Storage<E,N,M>, SV1: Storage<E,M,K> + Clone, SV2: Storage<E,N,K> + Clone, + N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + SimdComplexField, + DefaultAllocator : Allocator<N,K>, + DefaultAllocator : Allocator<M,K>, + DefaultAllocator : Allocator<N,M>, + DefaultAllocator : Allocator<M,N> { type AdjointCodomain = OMatrix<E,M,K>; type Adjoint<'a> = OMatrix<E,M,N> where SM : 'a; @@ -128,20 +152,6 @@ } } -impl<E,M,S,Si> Dot<Vector<E,M,Si>,E> -for Vector<E,M,S> -where M : Dim, - E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One, - S : Storage<E,M>, - Si : Storage<E,M>, - DefaultAllocator : Allocator<E,M> { - - #[inline] - fn dot(&self, other : &Vector<E,M,Si>) -> E { - Vector::<E,M,S>::dot(self, other) - } -} - /// This function is [`nalgebra::EuclideanNorm::metric_distance`] without the `sqrt`. #[inline] fn metric_distance_squared<T, R1, C1, S1, R2, C2, S2>( @@ -170,15 +180,15 @@ impl<E,M,S> Euclidean<E> for Vector<E,M,S> where M : Dim, - S : StorageMut<E,M>, - E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, - DefaultAllocator : Allocator<E,M> { + S : StorageMut<E,M> + Clone, + E : Float + Scalar + Zero + One + RealField, + DefaultAllocator : Allocator<M> { type Output = OVector<E, M>; - + #[inline] - fn similar_origin(&self) -> OVector<E, M> { - OVector::zeros_generic(M::from_usize(self.len()), Const) + fn dot<I : Instance<Self>>(&self, other : I) -> E { + Vector::<E,M,S>::dot(self, other.ref_instance()) } #[inline] @@ -187,17 +197,17 @@ } #[inline] - fn dist2_squared(&self, other : &Self) -> E { - metric_distance_squared(self, other) + fn dist2_squared<I : Instance<Self>>(&self, other : I) -> E { + metric_distance_squared(self, other.ref_instance()) } } impl<E,M,S> StaticEuclidean<E> for Vector<E,M,S> where M : DimName, - S : StorageMut<E,M>, - E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, - DefaultAllocator : Allocator<E,M> { + S : StorageMut<E,M> + Clone, + E : Float + Scalar + Zero + One + RealField, + DefaultAllocator : Allocator<M> { #[inline] fn origin() -> OVector<E, M> { @@ -205,78 +215,109 @@ } } +/// The default norm for `Vector` is [`L2`]. +impl<E,M,S> Normed<E> +for Vector<E,M,S> +where M : Dim, + S : Storage<E,M> + Clone, + E : Float + Scalar + Zero + One + RealField, + DefaultAllocator : Allocator<M> { + + type NormExp = L2; + + #[inline] + fn norm_exponent(&self) -> Self::NormExp { + L2 + } + + #[inline] + fn is_zero(&self) -> bool { + Vector::<E,M,S>::norm_squared(self) == E::ZERO + } +} + +impl<E,M,S> HasDual<E> +for Vector<E,M,S> +where M : Dim, + S : Storage<E,M> + Clone, + E : Float + Scalar + Zero + One + RealField, + DefaultAllocator : Allocator<M> { + // TODO: Doesn't work with different storage formats. + type DualSpace = Self; +} + impl<E,M,S> Norm<E, L1> for Vector<E,M,S> where M : Dim, - S : StorageMut<E,M>, - E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, - DefaultAllocator : Allocator<E,M> { + S : Storage<E,M>, + E : Float + Scalar + Zero + One + RealField, + DefaultAllocator : Allocator<M> { #[inline] fn norm(&self, _ : L1) -> E { - LpNorm(1).norm(self) + nalgebra::Norm::norm(&LpNorm(1), self) } } impl<E,M,S> Dist<E, L1> for Vector<E,M,S> where M : Dim, - S : StorageMut<E,M>, - E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, - DefaultAllocator : Allocator<E,M> { + S : Storage<E,M> + Clone, + E : Float + Scalar + Zero + One + RealField, + DefaultAllocator : Allocator<M> { #[inline] - fn dist(&self, other : &Self, _ : L1) -> E { - LpNorm(1).metric_distance(self, other) + fn dist<I : Instance<Self>>(&self, other : I, _ : L1) -> E { + nalgebra::Norm::metric_distance(&LpNorm(1), self, other.ref_instance()) } } impl<E,M,S> Norm<E, L2> for Vector<E,M,S> where M : Dim, - S : StorageMut<E,M>, - E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, - DefaultAllocator : Allocator<E,M> { + S : Storage<E,M>, + E : Float + Scalar + Zero + One + RealField, + DefaultAllocator : Allocator<M> { #[inline] fn norm(&self, _ : L2) -> E { - LpNorm(2).norm(self) + nalgebra::Norm::norm(&LpNorm(2), self) } } impl<E,M,S> Dist<E, L2> for Vector<E,M,S> where M : Dim, - S : StorageMut<E,M>, - E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, - DefaultAllocator : Allocator<E,M> { + S : Storage<E,M> + Clone, + E : Float + Scalar + Zero + One + RealField, + DefaultAllocator : Allocator<M> { #[inline] - fn dist(&self, other : &Self, _ : L2) -> E { - LpNorm(2).metric_distance(self, other) + fn dist<I : Instance<Self>>(&self, other : I, _ : L2) -> E { + nalgebra::Norm::metric_distance(&LpNorm(2), self, other.ref_instance()) } } impl<E,M,S> Norm<E, Linfinity> for Vector<E,M,S> where M : Dim, - S : StorageMut<E,M>, - E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, - DefaultAllocator : Allocator<E,M> { + S : Storage<E,M>, + E : Float + Scalar + Zero + One + RealField, + DefaultAllocator : Allocator<M> { #[inline] fn norm(&self, _ : Linfinity) -> E { - UniformNorm.norm(self) + nalgebra::Norm::norm(&UniformNorm, self) } } impl<E,M,S> Dist<E, Linfinity> for Vector<E,M,S> where M : Dim, - S : StorageMut<E,M>, - E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, - DefaultAllocator : Allocator<E,M> { + S : Storage<E,M> + Clone, + E : Float + Scalar + Zero + One + RealField, + DefaultAllocator : Allocator<M> { #[inline] - fn dist(&self, other : &Self, _ : Linfinity) -> E { - UniformNorm.metric_distance(self, other) + fn dist<I : Instance<Self>>(&self, other : I, _ : Linfinity) -> E { + nalgebra::Norm::metric_distance(&UniformNorm, self, other.ref_instance()) } }