1 /*! |
1 /*! |
2 Integration with nalgebra. |
2 Integration with nalgebra. |
3 |
3 |
4 This module mainly implements [`Euclidean`], [`Norm`], [`Dot`], [`Linear`], etc. for [`nalgebra`] |
4 This module mainly implements [`Euclidean`], [`Norm`], [`Linear`], etc. for [`nalgebra`] |
5 matrices and vectors. |
5 matrices and vectors. |
6 It also provides [`ToNalgebraRealField`] as a vomit-inducingly ugly workaround to nalgebra |
6 It also provides [`ToNalgebraRealField`] as a vomit-inducingly ugly workaround to nalgebra |
7 force-feeding its own versions of the same basic mathematical methods on `f32` and `f64` as |
7 force-feeding its own versions of the same basic mathematical methods on `f32` and `f64` as |
8 [`num_traits`] does. |
8 [`num_traits`] does. |
9 */ |
9 */ |
10 |
10 |
11 use nalgebra::{ |
11 use nalgebra::{ |
12 Matrix, Storage, StorageMut, OMatrix, Dim, DefaultAllocator, Scalar, |
12 Matrix, Storage, StorageMut, OMatrix, Dim, DefaultAllocator, Scalar, |
13 ClosedMul, ClosedAdd, SimdComplexField, Vector, OVector, RealField, |
13 ClosedAddAssign, ClosedMulAssign, SimdComplexField, Vector, OVector, RealField, |
14 LpNorm, UniformNorm |
14 LpNorm, UniformNorm |
15 }; |
15 }; |
16 use nalgebra::Norm as NalgebraNorm; |
|
17 use nalgebra::base::constraint::{ |
16 use nalgebra::base::constraint::{ |
18 ShapeConstraint, SameNumberOfRows, SameNumberOfColumns |
17 ShapeConstraint, SameNumberOfRows, SameNumberOfColumns |
19 }; |
18 }; |
20 use nalgebra::base::dimension::*; |
19 use nalgebra::base::dimension::*; |
21 use nalgebra::base::allocator::Allocator; |
20 use nalgebra::base::allocator::Allocator; |
22 use std::ops::Mul; |
21 use std::ops::Mul; |
23 use num_traits::identities::{Zero, One}; |
22 use num_traits::identities::{Zero, One}; |
24 use crate::linops::*; |
23 use crate::linops::*; |
25 use crate::euclidean::*; |
24 use crate::euclidean::*; |
|
25 use crate::mapping::{Space, BasicDecomposition}; |
26 use crate::types::Float; |
26 use crate::types::Float; |
27 use crate::norms::*; |
27 use crate::norms::*; |
28 |
28 use crate::instance::Instance; |
29 impl<SM,SV,N,M,K,E> Apply<Matrix<E,M,K,SV>> for Matrix<E,N,M,SM> |
29 |
30 where SM: Storage<E,N,M>, SV: Storage<E,M,K>, |
30 impl<SM,N,M,E> Space for Matrix<E,N,M,SM> |
31 N : Dim, M : Dim, K : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One, |
31 where |
32 DefaultAllocator : Allocator<E,N,K>, |
32 SM: Storage<E,N,M> + Clone, |
33 DefaultAllocator : Allocator<E,M,K>, |
33 N : Dim, M : Dim, E : Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign, |
34 DefaultAllocator : Allocator<E,N,M>, |
34 DefaultAllocator : Allocator<N,M>, |
35 DefaultAllocator : Allocator<E,M,N> { |
35 { |
36 type Output = OMatrix<E,N,K>; |
36 type Decomp = BasicDecomposition; |
37 |
37 } |
38 #[inline] |
38 |
39 fn apply(&self, x : Matrix<E,M,K,SV>) -> Self::Output { |
39 impl<SM,SV,N,M,K,E> Mapping<Matrix<E,M,K,SV>> for Matrix<E,N,M,SM> |
40 self.mul(x) |
40 where SM: Storage<E,N,M>, SV: Storage<E,M,K> + Clone, |
41 } |
41 N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign, |
42 } |
42 DefaultAllocator : Allocator<N,K>, |
43 |
43 DefaultAllocator : Allocator<M,K>, |
44 impl<'a, SM,SV,N,M,K,E> Apply<&'a Matrix<E,M,K,SV>> for Matrix<E,N,M,SM> |
44 DefaultAllocator : Allocator<N,M>, |
45 where SM: Storage<E,N,M>, SV: Storage<E,M,K>, |
45 DefaultAllocator : Allocator<M,N> { |
46 N : Dim, M : Dim, K : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One, |
46 type Codomain = OMatrix<E,N,K>; |
47 DefaultAllocator : Allocator<E,N,K>, |
47 |
48 DefaultAllocator : Allocator<E,M,K>, |
48 #[inline] |
49 DefaultAllocator : Allocator<E,N,M>, |
49 fn apply<I : Instance<Matrix<E,M,K,SV>>>( |
50 DefaultAllocator : Allocator<E,M,N> { |
50 &self, x : I |
51 type Output = OMatrix<E,N,K>; |
51 ) -> Self::Codomain { |
52 |
52 x.either(|owned| self.mul(owned), |refr| self.mul(refr)) |
53 #[inline] |
53 } |
54 fn apply(&self, x : &'a Matrix<E,M,K,SV>) -> Self::Output { |
54 } |
55 self.mul(x) |
55 |
56 } |
|
57 } |
|
58 |
56 |
59 impl<'a, SM,SV,N,M,K,E> Linear<Matrix<E,M,K,SV>> for Matrix<E,N,M,SM> |
57 impl<'a, SM,SV,N,M,K,E> Linear<Matrix<E,M,K,SV>> for Matrix<E,N,M,SM> |
60 where SM: Storage<E,N,M>, SV: Storage<E,M,K>, |
58 where SM: Storage<E,N,M>, SV: Storage<E,M,K> + Clone, |
61 N : Dim, M : Dim, K : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One, |
59 N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + ClosedAddAssign + ClosedMulAssign, |
62 DefaultAllocator : Allocator<E,N,K>, |
60 DefaultAllocator : Allocator<N,K>, |
63 DefaultAllocator : Allocator<E,M,K>, |
61 DefaultAllocator : Allocator<M,K>, |
64 DefaultAllocator : Allocator<E,N,M>, |
62 DefaultAllocator : Allocator<N,M>, |
65 DefaultAllocator : Allocator<E,M,N> { |
63 DefaultAllocator : Allocator<M,N> { |
66 type Codomain = OMatrix<E,N,K>; |
|
67 } |
64 } |
68 |
65 |
69 impl<SM,SV1,SV2,N,M,K,E> GEMV<E, Matrix<E,M,K,SV1>, Matrix<E,N,K,SV2>> for Matrix<E,N,M,SM> |
66 impl<SM,SV1,SV2,N,M,K,E> GEMV<E, Matrix<E,M,K,SV1>, Matrix<E,N,K,SV2>> for Matrix<E,N,M,SM> |
70 where SM: Storage<E,N,M>, SV1: Storage<E,M,K>, SV2: StorageMut<E,N,K>, |
67 where SM: Storage<E,N,M>, SV1: Storage<E,M,K> + Clone, SV2: StorageMut<E,N,K>, |
71 N : Dim, M : Dim, K : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One + Float, |
68 N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + Float, |
72 DefaultAllocator : Allocator<E,N,K>, |
69 DefaultAllocator : Allocator<N,K>, |
73 DefaultAllocator : Allocator<E,M,K>, |
70 DefaultAllocator : Allocator<M,K>, |
74 DefaultAllocator : Allocator<E,N,M>, |
71 DefaultAllocator : Allocator<N,M>, |
75 DefaultAllocator : Allocator<E,M,N> { |
72 DefaultAllocator : Allocator<M,N> { |
76 |
73 |
77 #[inline] |
74 #[inline] |
78 fn gemv(&self, y : &mut Matrix<E,N,K,SV2>, α : E, x : &Matrix<E,M,K,SV1>, β : E) { |
75 fn gemv<I : Instance<Matrix<E,M,K,SV1>>>( |
79 Matrix::gemm(y, α, self, x, β) |
76 &self, y : &mut Matrix<E,N,K,SV2>, α : E, x : I, β : E |
80 } |
77 ) { |
81 |
78 x.eval(|x̃| Matrix::gemm(y, α, self, x̃, β)) |
82 #[inline] |
79 } |
83 fn apply_mut<'a>(&self, y : &mut Matrix<E,N,K,SV2>, x : &Matrix<E,M,K,SV1>) { |
80 |
84 self.mul_to(x, y) |
81 #[inline] |
|
82 fn apply_mut<'a, I : Instance<Matrix<E,M,K,SV1>>>(&self, y : &mut Matrix<E,N,K,SV2>, x : I) { |
|
83 x.eval(|x̃| self.mul_to(x̃, y)) |
85 } |
84 } |
86 } |
85 } |
87 |
86 |
88 impl<SM,SV1,M,E> AXPY<E, Vector<E,M,SV1>> for Vector<E,M,SM> |
87 impl<SM,SV1,M,E> AXPY<E, Vector<E,M,SV1>> for Vector<E,M,SM> |
89 where SM: StorageMut<E,M>, SV1: Storage<E,M>, |
88 where SM: StorageMut<E,M> + Clone, SV1: Storage<E,M> + Clone, |
90 M : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One + Float, |
89 M : Dim, E : Scalar + Zero + One + Float, |
91 DefaultAllocator : Allocator<E,M> { |
90 DefaultAllocator : Allocator<M> { |
92 |
91 type Owned = OVector<E, M>; |
93 #[inline] |
92 |
94 fn axpy(&mut self, α : E, x : &Vector<E,M,SV1>, β : E) { |
93 #[inline] |
95 Matrix::axpy(self, α, x, β) |
94 fn axpy<I : Instance<Vector<E,M,SV1>>>(&mut self, α : E, x : I, β : E) { |
96 } |
95 x.eval(|x̃| Matrix::axpy(self, α, x̃, β)) |
97 |
96 } |
98 #[inline] |
97 |
99 fn copy_from(&mut self, y : &Vector<E,M,SV1>) { |
98 #[inline] |
100 Matrix::copy_from(self, y) |
99 fn copy_from<I : Instance<Vector<E,M,SV1>>>(&mut self, y : I) { |
101 } |
100 y.eval(|ỹ| Matrix::copy_from(self, ỹ)) |
102 } |
101 } |
|
102 |
|
103 #[inline] |
|
104 fn set_zero(&mut self) { |
|
105 self.iter_mut().for_each(|e| *e = E::ZERO); |
|
106 } |
|
107 |
|
108 #[inline] |
|
109 fn similar_origin(&self) -> Self::Owned { |
|
110 OVector::zeros_generic(M::from_usize(self.len()), Const) |
|
111 } |
|
112 } |
|
113 |
|
114 /* Implemented automatically as Euclidean. |
|
115 impl<SM,M,E> Projection<E, L2> for Vector<E,M,SM> |
|
116 where SM: StorageMut<E,M> + Clone, |
|
117 M : Dim, E : Scalar + Zero + One + Float + RealField, |
|
118 DefaultAllocator : Allocator<M> { |
|
119 #[inline] |
|
120 fn proj_ball_mut(&mut self, ρ : E, _ : L2) { |
|
121 let n = self.norm(L2); |
|
122 if n > ρ { |
|
123 self.iter_mut().for_each(|v| *v *= ρ/n) |
|
124 } |
|
125 } |
|
126 }*/ |
103 |
127 |
104 impl<SM,M,E> Projection<E, Linfinity> for Vector<E,M,SM> |
128 impl<SM,M,E> Projection<E, Linfinity> for Vector<E,M,SM> |
105 where SM: StorageMut<E,M>, |
129 where SM: StorageMut<E,M> + Clone, |
106 M : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One + Float + RealField, |
130 M : Dim, E : Scalar + Zero + One + Float + RealField, |
107 DefaultAllocator : Allocator<E,M> { |
131 DefaultAllocator : Allocator<M> { |
108 #[inline] |
132 #[inline] |
109 fn proj_ball_mut(&mut self, ρ : E, _ : Linfinity) { |
133 fn proj_ball_mut(&mut self, ρ : E, _ : Linfinity) { |
110 self.iter_mut().for_each(|v| *v = num_traits::clamp(*v, -ρ, ρ)) |
134 self.iter_mut().for_each(|v| *v = num_traits::clamp(*v, -ρ, ρ)) |
111 } |
135 } |
112 } |
136 } |
113 |
137 |
114 impl<'own,SV1,SV2,SM,N,M,K,E> Adjointable<Matrix<E,M,K,SV1>,Matrix<E,N,K,SV2>> |
138 impl<'own,SV1,SV2,SM,N,M,K,E> Adjointable<Matrix<E,M,K,SV1>, Matrix<E,N,K,SV2>> |
115 for Matrix<E,N,M,SM> |
139 for Matrix<E,N,M,SM> |
116 where SM: Storage<E,N,M>, SV1: Storage<E,M,K>, SV2: Storage<E,N,K>, |
140 where SM: Storage<E,N,M>, SV1: Storage<E,M,K> + Clone, SV2: Storage<E,N,K> + Clone, |
117 N : Dim, M : Dim, K : Dim, E : Scalar + ClosedMul + ClosedAdd + Zero + One + SimdComplexField, |
141 N : Dim, M : Dim, K : Dim, E : Scalar + Zero + One + SimdComplexField, |
118 DefaultAllocator : Allocator<E,N,K>, |
142 DefaultAllocator : Allocator<N,K>, |
119 DefaultAllocator : Allocator<E,M,K>, |
143 DefaultAllocator : Allocator<M,K>, |
120 DefaultAllocator : Allocator<E,N,M>, |
144 DefaultAllocator : Allocator<N,M>, |
121 DefaultAllocator : Allocator<E,M,N> { |
145 DefaultAllocator : Allocator<M,N> { |
122 type AdjointCodomain = OMatrix<E,M,K>; |
146 type AdjointCodomain = OMatrix<E,M,K>; |
123 type Adjoint<'a> = OMatrix<E,M,N> where SM : 'a; |
147 type Adjoint<'a> = OMatrix<E,M,N> where SM : 'a; |
124 |
148 |
125 #[inline] |
149 #[inline] |
126 fn adjoint(&self) -> Self::Adjoint<'_> { |
150 fn adjoint(&self) -> Self::Adjoint<'_> { |
127 Matrix::adjoint(self) |
151 Matrix::adjoint(self) |
128 } |
|
129 } |
|
130 |
|
131 impl<E,M,S,Si> Dot<Vector<E,M,Si>,E> |
|
132 for Vector<E,M,S> |
|
133 where M : Dim, |
|
134 E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One, |
|
135 S : Storage<E,M>, |
|
136 Si : Storage<E,M>, |
|
137 DefaultAllocator : Allocator<E,M> { |
|
138 |
|
139 #[inline] |
|
140 fn dot(&self, other : &Vector<E,M,Si>) -> E { |
|
141 Vector::<E,M,S>::dot(self, other) |
|
142 } |
152 } |
143 } |
153 } |
144 |
154 |
145 /// This function is [`nalgebra::EuclideanNorm::metric_distance`] without the `sqrt`. |
155 /// This function is [`nalgebra::EuclideanNorm::metric_distance`] without the `sqrt`. |
146 #[inline] |
156 #[inline] |
168 // TODO: should allow different input storages in `Euclidean`. |
178 // TODO: should allow different input storages in `Euclidean`. |
169 |
179 |
170 impl<E,M,S> Euclidean<E> |
180 impl<E,M,S> Euclidean<E> |
171 for Vector<E,M,S> |
181 for Vector<E,M,S> |
172 where M : Dim, |
182 where M : Dim, |
173 S : StorageMut<E,M>, |
183 S : StorageMut<E,M> + Clone, |
174 E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, |
184 E : Float + Scalar + Zero + One + RealField, |
175 DefaultAllocator : Allocator<E,M> { |
185 DefaultAllocator : Allocator<M> { |
176 |
186 |
177 type Output = OVector<E, M>; |
187 type Output = OVector<E, M>; |
178 |
188 |
179 #[inline] |
189 #[inline] |
180 fn similar_origin(&self) -> OVector<E, M> { |
190 fn dot<I : Instance<Self>>(&self, other : I) -> E { |
181 OVector::zeros_generic(M::from_usize(self.len()), Const) |
191 Vector::<E,M,S>::dot(self, other.ref_instance()) |
182 } |
192 } |
183 |
193 |
184 #[inline] |
194 #[inline] |
185 fn norm2_squared(&self) -> E { |
195 fn norm2_squared(&self) -> E { |
186 Vector::<E,M,S>::norm_squared(self) |
196 Vector::<E,M,S>::norm_squared(self) |
187 } |
197 } |
188 |
198 |
189 #[inline] |
199 #[inline] |
190 fn dist2_squared(&self, other : &Self) -> E { |
200 fn dist2_squared<I : Instance<Self>>(&self, other : I) -> E { |
191 metric_distance_squared(self, other) |
201 metric_distance_squared(self, other.ref_instance()) |
192 } |
202 } |
193 } |
203 } |
194 |
204 |
195 impl<E,M,S> StaticEuclidean<E> |
205 impl<E,M,S> StaticEuclidean<E> |
196 for Vector<E,M,S> |
206 for Vector<E,M,S> |
197 where M : DimName, |
207 where M : DimName, |
198 S : StorageMut<E,M>, |
208 S : StorageMut<E,M> + Clone, |
199 E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, |
209 E : Float + Scalar + Zero + One + RealField, |
200 DefaultAllocator : Allocator<E,M> { |
210 DefaultAllocator : Allocator<M> { |
201 |
211 |
202 #[inline] |
212 #[inline] |
203 fn origin() -> OVector<E, M> { |
213 fn origin() -> OVector<E, M> { |
204 OVector::zeros() |
214 OVector::zeros() |
205 } |
215 } |
206 } |
216 } |
207 |
217 |
|
218 /// The default norm for `Vector` is [`L2`]. |
|
219 impl<E,M,S> Normed<E> |
|
220 for Vector<E,M,S> |
|
221 where M : Dim, |
|
222 S : Storage<E,M> + Clone, |
|
223 E : Float + Scalar + Zero + One + RealField, |
|
224 DefaultAllocator : Allocator<M> { |
|
225 |
|
226 type NormExp = L2; |
|
227 |
|
228 #[inline] |
|
229 fn norm_exponent(&self) -> Self::NormExp { |
|
230 L2 |
|
231 } |
|
232 |
|
233 #[inline] |
|
234 fn is_zero(&self) -> bool { |
|
235 Vector::<E,M,S>::norm_squared(self) == E::ZERO |
|
236 } |
|
237 } |
|
238 |
|
239 impl<E,M,S> HasDual<E> |
|
240 for Vector<E,M,S> |
|
241 where M : Dim, |
|
242 S : Storage<E,M> + Clone, |
|
243 E : Float + Scalar + Zero + One + RealField, |
|
244 DefaultAllocator : Allocator<M> { |
|
245 // TODO: Doesn't work with different storage formats. |
|
246 type DualSpace = Self; |
|
247 } |
|
248 |
208 impl<E,M,S> Norm<E, L1> |
249 impl<E,M,S> Norm<E, L1> |
209 for Vector<E,M,S> |
250 for Vector<E,M,S> |
210 where M : Dim, |
251 where M : Dim, |
211 S : StorageMut<E,M>, |
252 S : Storage<E,M>, |
212 E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, |
253 E : Float + Scalar + Zero + One + RealField, |
213 DefaultAllocator : Allocator<E,M> { |
254 DefaultAllocator : Allocator<M> { |
214 |
255 |
215 #[inline] |
256 #[inline] |
216 fn norm(&self, _ : L1) -> E { |
257 fn norm(&self, _ : L1) -> E { |
217 LpNorm(1).norm(self) |
258 nalgebra::Norm::norm(&LpNorm(1), self) |
218 } |
259 } |
219 } |
260 } |
220 |
261 |
221 impl<E,M,S> Dist<E, L1> |
262 impl<E,M,S> Dist<E, L1> |
222 for Vector<E,M,S> |
263 for Vector<E,M,S> |
223 where M : Dim, |
264 where M : Dim, |
224 S : StorageMut<E,M>, |
265 S : Storage<E,M> + Clone, |
225 E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, |
266 E : Float + Scalar + Zero + One + RealField, |
226 DefaultAllocator : Allocator<E,M> { |
267 DefaultAllocator : Allocator<M> { |
227 #[inline] |
268 #[inline] |
228 fn dist(&self, other : &Self, _ : L1) -> E { |
269 fn dist<I : Instance<Self>>(&self, other : I, _ : L1) -> E { |
229 LpNorm(1).metric_distance(self, other) |
270 nalgebra::Norm::metric_distance(&LpNorm(1), self, other.ref_instance()) |
230 } |
271 } |
231 } |
272 } |
232 |
273 |
233 impl<E,M,S> Norm<E, L2> |
274 impl<E,M,S> Norm<E, L2> |
234 for Vector<E,M,S> |
275 for Vector<E,M,S> |
235 where M : Dim, |
276 where M : Dim, |
236 S : StorageMut<E,M>, |
277 S : Storage<E,M>, |
237 E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, |
278 E : Float + Scalar + Zero + One + RealField, |
238 DefaultAllocator : Allocator<E,M> { |
279 DefaultAllocator : Allocator<M> { |
239 |
280 |
240 #[inline] |
281 #[inline] |
241 fn norm(&self, _ : L2) -> E { |
282 fn norm(&self, _ : L2) -> E { |
242 LpNorm(2).norm(self) |
283 nalgebra::Norm::norm(&LpNorm(2), self) |
243 } |
284 } |
244 } |
285 } |
245 |
286 |
246 impl<E,M,S> Dist<E, L2> |
287 impl<E,M,S> Dist<E, L2> |
247 for Vector<E,M,S> |
288 for Vector<E,M,S> |
248 where M : Dim, |
289 where M : Dim, |
249 S : StorageMut<E,M>, |
290 S : Storage<E,M> + Clone, |
250 E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, |
291 E : Float + Scalar + Zero + One + RealField, |
251 DefaultAllocator : Allocator<E,M> { |
292 DefaultAllocator : Allocator<M> { |
252 #[inline] |
293 #[inline] |
253 fn dist(&self, other : &Self, _ : L2) -> E { |
294 fn dist<I : Instance<Self>>(&self, other : I, _ : L2) -> E { |
254 LpNorm(2).metric_distance(self, other) |
295 nalgebra::Norm::metric_distance(&LpNorm(2), self, other.ref_instance()) |
255 } |
296 } |
256 } |
297 } |
257 |
298 |
258 impl<E,M,S> Norm<E, Linfinity> |
299 impl<E,M,S> Norm<E, Linfinity> |
259 for Vector<E,M,S> |
300 for Vector<E,M,S> |
260 where M : Dim, |
301 where M : Dim, |
261 S : StorageMut<E,M>, |
302 S : Storage<E,M>, |
262 E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, |
303 E : Float + Scalar + Zero + One + RealField, |
263 DefaultAllocator : Allocator<E,M> { |
304 DefaultAllocator : Allocator<M> { |
264 |
305 |
265 #[inline] |
306 #[inline] |
266 fn norm(&self, _ : Linfinity) -> E { |
307 fn norm(&self, _ : Linfinity) -> E { |
267 UniformNorm.norm(self) |
308 nalgebra::Norm::norm(&UniformNorm, self) |
268 } |
309 } |
269 } |
310 } |
270 |
311 |
271 impl<E,M,S> Dist<E, Linfinity> |
312 impl<E,M,S> Dist<E, Linfinity> |
272 for Vector<E,M,S> |
313 for Vector<E,M,S> |
273 where M : Dim, |
314 where M : Dim, |
274 S : StorageMut<E,M>, |
315 S : Storage<E,M> + Clone, |
275 E : Float + Scalar + ClosedMul + ClosedAdd + Zero + One + RealField, |
316 E : Float + Scalar + Zero + One + RealField, |
276 DefaultAllocator : Allocator<E,M> { |
317 DefaultAllocator : Allocator<M> { |
277 #[inline] |
318 #[inline] |
278 fn dist(&self, other : &Self, _ : Linfinity) -> E { |
319 fn dist<I : Instance<Self>>(&self, other : I, _ : Linfinity) -> E { |
279 UniformNorm.metric_distance(self, other) |
320 nalgebra::Norm::metric_distance(&UniformNorm, self, other.ref_instance()) |
280 } |
321 } |
281 } |
322 } |
282 |
323 |
283 /// Helper trait to hide the symbols of [`nalgebra::RealField`]. |
324 /// Helper trait to hide the symbols of [`nalgebra::RealField`]. |
284 /// |
325 /// |