Tue, 30 Apr 2024 16:00:25 +0300
experimental dual scaling
src/OpticalFlow.jl | file | annotate | diff | comparison | revisions | |
src/PET/PET.jl | file | annotate | diff | comparison | revisions | |
src/PredictPDPS.jl | file | annotate | diff | comparison | revisions | |
src/Stats.jl | file | annotate | diff | comparison | revisions |
--- a/src/OpticalFlow.jl Thu Apr 25 15:21:45 2024 -0500 +++ b/src/OpticalFlow.jl Tue Apr 30 16:00:25 2024 +0300 @@ -42,7 +42,7 @@ HornSchunckData, filter_hs, petpdflow!, - DualScaling, Greedy, Rotation, ZeroDual, PrimalOnly, + DualScaling, Greedy, Rotation, ZeroDual, PrimalOnly, ActivatedDual, identifier ############################################### @@ -64,13 +64,14 @@ struct DualScaling exponent :: Integer threshold :: Real - DualScaling(e = 10, t = 1e-12) = new(e, t) + DualScaling(e = 50, t = 1e-12) = new(e, t) end struct Greedy end struct Rotation end struct ZeroDual end struct PrimalOnly end +struct ActivatedDual end function identifier(::DualScaling) "pdps_known_dualscaling" @@ -92,6 +93,10 @@ "pdps_known_primalonly" end +function identifier(::ActivatedDual) + "pdps_known_activateddual" +end + ################################# # Displacement field based flow ################################# @@ -199,6 +204,29 @@ y .= C.*y end +function activation(x) + # return (1/(1 + exp(-(x - 1.5)))) # Works well with dual norm activation for lighthouse and brainphantom + # return 0.2/(1 + exp(-5(x-0.5))) + 0.3 # Works well with dual norm activation for lighthouse and brainphantom + return 1.0 - 0.5/(1+ exp(-100(x-0.7))) +end + +# Experimental predictor for dual scaling based on activation +function pdflow!(x, Δx, y, Δy, u, flow :: ActivatedDual; threads=:none) + @assert(size(u)==(2,)) + oldx = copy(x) + flow!(x, u; threads=(threads==:inner)) + C = similar(y) + # cc = abs.(x-oldx) + # cm = max(1e-12,maximum(cc)) + # c = activation.(1 .- cc./ cm) + # C[1,:,:] .= c + # C[2,:,:] .= c + Δx .= activation.((sqrt.(abs.(y[1,:,:]).^2 + abs.(y[2,:,:]).^2))./0.25) + C[1,:,:] .= Δx + C[2,:,:] .= Δx + y .= C.*y +end + function pdflow!(x, Δx, y, Δy, u, :: ZeroDual; threads=:none) @assert(size(u)==(2,)) flow!(x, u; threads=(threads==:inner)) @@ -265,13 +293,32 @@ @. x = Δx C = similar(y) cc = abs.(x-oldx) - cm = max(1e-12,maximum(cc)) - c = 1 .* (1 .- cc./ cm) .^(10) + cm = max(flow.threshold,maximum(cc)) + c = 1 .* (1 .- cc./ cm) .^flow.exponent C[1,:,:] .= c C[2,:,:] .= c y .= C.*y end +# Experimental predictor for dual scaling based on activation +function petpdflow!(x, Δx, y, Δy, u, theta_known, flow :: ActivatedDual; threads=:none) + oldx = copy(x) + center_point = center(x) .+ u + tform = recenter(RotMatrix(theta_known[1]), center_point) + Δx = warp(x, tform, axes(x), fillvalue=Flat()) + @. x = Δx + C = similar(y) + # cc = abs.(x-oldx) + # cm = max(1e-12,maximum(cc)) + # c = activation.(1 .- cc./ cm) + # C[1,:,:] .= c + # C[2,:,:] .= c + Δx .= activation.((sqrt.(abs.(y[1,:,:]).^2 + abs.(y[2,:,:]).^2))./0.25) + C[1,:,:] .= Δx + C[2,:,:] .= Δx + y .= C.*y +end + # Method for rotation prediction (exploiting property of inverse rotation) function petpdflow!(x, Δx, y, Δy, u, theta_known, flow :: Rotation; threads=:none) @backgroundif (threads==:outer) begin
--- a/src/PET/PET.jl Thu Apr 25 15:21:45 2024 -0500 +++ b/src/PET/PET.jl Tue Apr 30 16:00:25 2024 +0300 @@ -122,6 +122,8 @@ p_known₀_pets ⬿ (predictor=Rotation(),)), Experiment(AlgorithmNew, DisplacementConstant, shepplogan, p_known₀_pets ⬿ (predictor=ZeroDual(),)), + Experiment(AlgorithmNew, DisplacementConstant, shepplogan, + p_known₀_pets ⬿ (predictor=ActivatedDual(),)), ) const brainphantom_experiments_pdps_known = ( @@ -139,6 +141,8 @@ p_known₀_petb ⬿ (predictor=Rotation(),)), Experiment(AlgorithmNew, DisplacementConstant, brainphantom, p_known₀_petb ⬿ (predictor=ZeroDual(),)), + Experiment(AlgorithmNew, DisplacementConstant, brainphantom, + p_known₀_petb ⬿ (predictor=ActivatedDual(),)), )
--- a/src/PredictPDPS.jl Thu Apr 25 15:21:45 2024 -0500 +++ b/src/PredictPDPS.jl Tue Apr 30 16:00:25 2024 +0300 @@ -183,6 +183,8 @@ p_known₀_denoising ⬿ (predictor=Rotation(),)), Experiment(AlgorithmNew, DisplacementConstant, lighthouse, p_known₀_denoising ⬿ (predictor=ZeroDual(),)), + Experiment(AlgorithmNew, DisplacementConstant, lighthouse, + p_known₀_denoising ⬿ (predictor=ActivatedDual(),)), ) const denoising_experiments_all = Iterators.flatten((
--- a/src/Stats.jl Thu Apr 25 15:21:45 2024 -0500 +++ b/src/Stats.jl Tue Apr 30 16:00:25 2024 +0300 @@ -42,7 +42,7 @@ end const default_imnames = ("lighthouse200x300", "shepplogan256x256", "brainphantom256x256") -const default_algnames = ("dualscaling", "greedy","noprediction","primalonly","proximal","rotation","zerodual") +const default_algnames = ("dualscaling", "greedy","noprediction","primalonly","proximal","rotation","zerodual","activateddual") function calculate_statistics(;imnames=default_imnames, algnames=default_algnames, @@ -99,7 +99,7 @@ end end end - sort!(results, [:experiment, :α]) + sort!(results, [:experiment, :α, :algorithm]) if isfile(csv_path) rm(csv_path) end