Tue, 30 Apr 2024 16:00:25 +0300
experimental dual scaling
################### # Image generation ################### module ImGenerate using ColorTypes: Gray import TestImages # We don't really *directly* depend on QuartzImageIO. The import here is # merely a workaround to suppress warnings when loading TestImages. # Something is broken in those packages. import QuartzImageIO using AlgTools.Util using AlgTools.Comms using ImageTools.Translate using ..OpticalFlow: Image, DisplacementConstant, DisplacementFull using ..Radon # Added for reproducibility import StableRNGs: StableRNG, Random const rng = StableRNG(314159) # Added for PET import PoissonRandom: pois_rand import Random: shuffle import Images: center, warp, imresize import CoordinateTransformations: recenter import Rotations: RotMatrix import Interpolations: Flat import MAT: matread ############## # Our exports ############## export ImGen, OnlineData, imgen_square, imgen_shake, PetOnlineData, imgen_shepplogan_radon, imgen_brainphantom_radon ################## # Data structures ################## struct ImGen f :: Function dim :: Tuple{Int64,Int64} Λ :: Float64 dynrange :: Float64 name :: String end struct OnlineData{DisplacementT} b_true :: Image b_noisy :: Image v :: DisplacementT v_true :: DisplacementT v_cumul_true :: DisplacementT end struct PetOnlineData{DisplacementT} b_true :: Image sinogram_true :: Image sinogram_noisy :: Image v :: DisplacementT v_true :: DisplacementT v_cumul_true :: DisplacementT theta :: DisplacementT # theta = thetaknown, theta_cumul S :: Image end ################### # Shake generation ################### function make_const_v(displ, sz) v = zeros(2, sz...) v[1, :, :] .= displ[1] v[2, :, :] .= displ[2] return v end function shake(params) if !haskey(params, :shaketype) || params.shaketype == :gaussian return () -> params.shake.*randn(rng,2) elseif params.shaketype == :disk return () -> begin θ = 2π*rand(rng,Float64) r = params.shake*√(rand(rng,Float64)) return [r*cos(θ), r*sin(θ)] end elseif params.shaketype == :circle return () -> begin θ = 2π*rand(rng,Float64) r = params.shake return [r*cos(θ), r*sin(θ)] end else error("Unknown shaketype $(params.shaketype)") end end pixelwise = (shakefn, sz) -> () -> make_const_u(shakefn(), sz) function rotatebytheta(params) r = params.rotation_factor*randn(rng) return r end function generate_radonmask(params) imdim = params.radondims sino_sparse = params.sino_sparsity numzero = Int64(round(sino_sparse*imdim[1]*imdim[2])) numone = imdim[1]*imdim[2]-numzero A = shuffle(rng,reshape([ones(numone); zeros(numzero)],(imdim[1],imdim[2]))) return A end ################ # Moving square ################ function generate_square(sz, :: Type{DisplacementT}, datachannel :: Channel{OnlineData{DisplacementT}}, params) where DisplacementT if false v₀ = make_const_v(0.1.*(-1, 1), sz) nextv = () -> v₀ elseif DisplacementT == DisplacementFull nextv = pixelwise(shake(params), sz) elseif DisplacementT == DisplacementConstant nextv = shake(params) else @error "Invalid DisplacementT" end # Constant linear displacement everywhere has Jacobian determinant one # (modulo the boundaries which we ignore here) m = round(Int, sz[1]/5) b_orig = zeros(sz...) b_orig[sz[1].-(2*m:3*m), 2*m:3*m] .= 1 v_true = nextv() v_cumul = copy(v_true) while true # Flow original data and add noise b_true = zeros(sz...) translate_image!(b_true, b_orig, v_cumul; threads=true) b = b_true .+ params.noise_level.*randn(rng,sz...) v = v_true.*(1.0 .+ params.shake_noise_level.*randn(rng,size(v_true)...)) # Pass true data to iteration routine data = OnlineData{DisplacementT}(b_true, b, v, v_true, v_cumul) if !put_unless_closed!(datachannel, data) return end # Next step shake v_true = nextv() v_cumul .+= v_true end end function imgen_square(sz) return ImGen(curry(generate_square, sz), sz, 1, 1, "square$(sz[1])x$(sz[2])") end ################ # Shake a photo ################ function generate_shake_image(im, sz, :: Type{DisplacementConstant}, datachannel :: Channel{OnlineData{DisplacementConstant}}, params :: NamedTuple) # Set up counter and zero factor for stabilisation @assert(params.maxiter ≥ maximum(params.stable_interval)) indx = 1 zero_factor = indx in params.stable_interval ? 0.0 : 1.0 # Restart the seed to enable comparison across predictors Random.seed!(rng, if haskey(params, :seed) params.seed else 951508 end) nextv = shake(params) v_true = zero_factor.*nextv() v_cumul = copy(v_true) while true # Extract subwindow of original image and add noise b_true = zeros(sz...) extract_subimage!(b_true, im, v_cumul; threads=true) b = b_true .+ params.noise_level.*randn(rng,sz...) v = v_true.*(1.0 .+ params.shake_noise_level.*randn(rng,size(v_true)...)) # Pass data to iteration routine data = OnlineData{DisplacementConstant}(b_true, b, v, v_true, v_cumul) if !put_unless_closed!(datachannel, data) return end # Next step shake v_true = zero_factor.*nextv() v_cumul .+= v_true # Update indx and zero factor indx += 1 zero_factor = indx in params.stable_interval ? 0.0 : 1.0 end end function imgen_shake(imname, sz) im = Float64.(Gray.(TestImages.testimage(imname))) dynrange = maximum(im) return ImGen(curry(generate_shake_image, im, sz), sz, 1, dynrange, "$(imname)$(sz[1])x$(sz[2])") end ######################################################################## # PETscan ######################################################################## function generate_sinogram(im, sz, :: Type{DisplacementConstant}, datachannel :: Channel{PetOnlineData{DisplacementConstant}}, params :: NamedTuple) # Set up counter and zero factor for stabilisation @assert(params.maxiter ≥ maximum(params.stable_interval)) indx = 1 zero_factor = indx in params.stable_interval ? 0.0 : 1.0 # Restart the seed to enable comparison across predictors Random.seed!(rng, if haskey(params, :seed) params.seed else 314159 end) nextv = shake(params) v_true = zero_factor.*nextv() v_cumul = copy(v_true) S_true = generate_radonmask(params) theta_true = zero_factor*rotatebytheta(params) theta_cumul = copy(theta_true) while true # Define the transformation matrix center_point = (sz[1]/2 + v_true[1], sz[2]/2 + v_true[2]) tform = recenter(RotMatrix(theta_cumul), center_point) # Apply the transformation to the image using warp b_true = copy(warp(im, tform, axes(im), fillvalue=Flat())) v = v_true.*(1.0 .+ params.shake_noise_level.*randn(rng,size(v_true)...)) theta = theta_true*(1.0 + params.rotation_noise_level.*randn(rng)) # Generate the true and noisy sinograms sinogram_true = zeros(params.radondims...) sinogram_true .*= params.scale radon!(sinogram_true, b_true) sinogram_noisy = copy(sinogram_true) for i=1:params.radondims[1], j=1:params.radondims[2] sinogram_noisy[i, j] += pois_rand(rng,params.noise_level) end # Pass data to iteration routine data = PetOnlineData{DisplacementConstant}(b_true, sinogram_true, sinogram_noisy, v, v_true, v_cumul, [theta, theta_cumul], S_true) if !put_unless_closed!(datachannel, data) return end # Next step shake v_true = zero_factor.*nextv() v_cumul .+= v_true # Next theta theta_true = zero_factor*rotatebytheta(params) theta_cumul += theta_true # Next sinogram mask S_true = generate_radonmask(params) # Update indx and zero factor indx += 1 zero_factor = indx in params.stable_interval ? 0.0 : 1.0 end end function imgen_shepplogan_radon(sz) im = convert(Array{Float64},TestImages.shepp_logan(sz[1], highContrast=true)) dynrange = maximum(im) return ImGen(curry(generate_sinogram, im, sz), sz, 1, dynrange, "shepplogan$(sz[1])x$(sz[2])") end function imgen_brainphantom_radon(sz) data = matread("src/PET/phantom_slice.mat") im = normalise(imresize(convert(Array{Float64},data["square_data"]),sz)) dynrange = maximum(im) return ImGen(curry(generate_sinogram, im, sz), sz, 1, dynrange, "brainphantom$(sz[1])x$(sz[2])") end normalise = (data) -> data./maximum(data) end # Module