Mon, 18 Nov 2019 15:13:04 -0500
consistent signs
| 0 | 1 | ######################## |
| 2 | # Discretised gradients | |
| 3 | ######################## | |
| 4 | ||
| 5 | module Gradient | |
| 6 | ||
| 7 | ############## | |
| 8 | # Our exports | |
| 9 | ############## | |
| 10 | ||
| 11 | export ∇₂!, ∇₂ᵀ!, ∇₂fold!, | |
| 12 | ∇₂_norm₂₂_est, ∇₂_norm₂₂_est², | |
| 13 | ∇₂_norm₂∞_est, ∇₂_norm₂∞_est², | |
| 14 | ∇₂c!, | |
| 15 | ∇₃!, ∇₃ᵀ!, | |
| 16 | vec∇₃!, vec∇₃ᵀ! | |
| 17 | ||
| 18 | ################## | |
| 19 | # Helper routines | |
| 20 | ################## | |
| 21 | ||
| 22 | @inline function imfold₂′!(f_aa!, f_a0!, f_ab!, | |
| 23 | f_0a!, f_00!, f_0b!, | |
| 24 | f_ba!, f_b0!, f_bb!, | |
| 25 | n, m, state) | |
| 26 | # First row | |
| 27 | state = f_aa!(state, (1, 1)) | |
| 28 | for j = 2:m-1 | |
| 29 | state = f_a0!(state, (1, j)) | |
| 30 | end | |
| 31 | state = f_ab!(state, (1, m)) | |
| 32 | ||
| 33 | # Middle rows | |
| 34 | for i=2:n-1 | |
| 35 | state = f_0a!(state, (i, 1)) | |
| 36 | for j = 2:m-1 | |
| 37 | state = f_00!(state, (i, j)) | |
| 38 | end | |
| 39 | state = f_0b!(state, (i, m)) | |
| 40 | end | |
| 41 | ||
| 42 | # Last row | |
| 43 | state = f_ba!(state, (n, 1)) | |
| 44 | for j =2:m-1 | |
| 45 | state = f_b0!(state, (n, j)) | |
| 46 | end | |
| 47 | return f_bb!(state, (n, m)) | |
| 48 | end | |
| 49 | ||
| 50 | ######################### | |
| 51 | # 2D forward differences | |
| 52 | ######################### | |
| 53 | ||
| 54 | ∇₂_norm₂₂_est² = 8 | |
| 55 | ∇₂_norm₂₂_est = √∇₂_norm₂₂_est² | |
| 56 | ∇₂_norm₂∞_est² = 2 | |
| 57 | ∇₂_norm₂∞_est = √∇₂_norm₂∞_est² | |
| 58 | ||
| 59 | function ∇₂!(u₁, u₂, u) | |
| 60 | @. @views begin | |
| 61 | u₁[1:(end-1), :] = u[2:end, :] - u[1:(end-1), :] | |
| 62 | u₁[end, :, :] = 0 | |
| 63 | ||
| 64 | u₂[:, 1:(end-1)] = u[:, 2:end] - u[:, 1:(end-1)] | |
| 65 | u₂[:, end] = 0 | |
| 66 | end | |
| 67 | return u₁, u₂ | |
| 68 | end | |
| 69 | ||
| 70 | function ∇₂!(v, u) | |
| 71 | ∇₂!(@view(v[1, :, :]), @view(v[2, :, :]), u) | |
| 72 | end | |
| 73 | ||
| 74 | @inline function ∇₂fold!(f!::Function, u, state) | |
| 75 | g! = (state, pt) -> begin | |
| 76 | (i, j) = pt | |
| 77 | g = @inbounds [u[i+1, j]-u[i, j], u[i, j+1]-u[i, j]] | |
| 78 | return f!(g, state, pt) | |
| 79 | end | |
| 80 | gr! = (state, pt) -> begin | |
| 81 | (i, j) = pt | |
| 82 | g = @inbounds [u[i+1, j]-u[i, j], 0.0] | |
| 83 | return f!(g, state, pt) | |
| 84 | end | |
| 85 | gb! = (state, pt) -> begin | |
| 86 | (i, j) = pt | |
| 87 | g = @inbounds [0.0, u[i, j+1]-u[i, j]] | |
| 88 | return f!(g, state, pt) | |
| 89 | end | |
| 90 | g0! = (state, pt) -> begin | |
| 91 | return f!([0.0, 0.0], state, pt) | |
| 92 | end | |
| 93 | return imfold₂′!(g!, g!, gr!, | |
| 94 | g!, g!, gr!, | |
| 95 | gb!, gb!, g0!, | |
| 96 | size(u, 1), size(u, 2), state) | |
| 97 | end | |
| 98 | ||
| 99 | function ∇₂ᵀ!(v, v₁, v₂) | |
| 100 | @. @views begin | |
| 101 | v[2:(end-1), :] = v₁[1:(end-2), :] - v₁[2:(end-1), :] | |
| 102 | v[1, :] = -v₁[1, :] | |
| 103 | v[end, :] = v₁[end-1, :] | |
| 104 | ||
| 105 | v[:, 2:(end-1)] += v₂[:, 1:(end-2)] - v₂[:, 2:(end-1)] | |
| 106 | v[:, 1] += -v₂[:, 1] | |
| 107 | v[:, end] += v₂[:, end-1] | |
| 108 | end | |
| 109 | return v | |
| 110 | end | |
| 111 | ||
| 112 | function ∇₂ᵀ!(u, v) | |
| 113 | ∇₂ᵀ!(u, @view(v[1, :, :]), @view(v[2, :, :])) | |
| 114 | end | |
| 115 | ||
| 116 | ################################################## | |
| 117 | # 2D central differences (partial implementation) | |
| 118 | ################################################## | |
| 119 | ||
| 120 | function ∇₂c!(v, u) | |
| 121 | @. @views begin | |
| 122 | v[1, 2:(end-1), :] = (u[3:end, :] - u[1:(end-2), :])/2 | |
| 123 | v[1, end, :] = (u[end, :] - u[end-1, :])/2 | |
| 124 | v[1, 1, :] = (u[2, :] - u[1, :])/2 | |
| 125 | ||
| 126 | v[2, :, 2:(end-1)] = (u[:, 3:end] - u[:, 1:(end-2)])/2 | |
| 127 | v[2, :, end] = (u[:, end] - u[:, end-1])/2 | |
| 128 | v[2, :, 1] = (u[:, 2] - u[:, 1])/2 | |
| 129 | end | |
| 130 | end | |
| 131 | ||
| 132 | ######################### | |
| 133 | # 3D forward differences | |
| 134 | ######################### | |
| 135 | ||
| 136 | function ∇₃!(u₁,u₂,u₃,u) | |
| 137 | @. @views begin | |
| 138 | u₁[1:(end-1), :, :] = u[2:end, :, :] - u[1:(end-1), :, :] | |
| 139 | u₁[end, :, :] = 0 | |
| 140 | ||
| 141 | u₂[:, 1:(end-1), :] = u[:, 2:end, :] - u[:, 1:(end-1), :] | |
| 142 | u₂[:, end, :] = 0 | |
| 143 | ||
| 144 | u₃[:, :, 1:(end-1)] = u[:, :, 2:end] - u[:, :, 1:(end-1)] | |
| 145 | u₃[:, :, end] = 0 | |
| 146 | end | |
| 147 | return u₁, u₂, u₃ | |
| 148 | end | |
| 149 | ||
| 150 | function ∇₃ᵀ!(v,v₁,v₂,v₃) | |
| 151 | @. @views begin | |
| 152 | v[2:(end-1), :, :] = v₁[1:(end-2), :, :] - v₁[2:(end-1), :, :] | |
| 153 | v[1, :, :] = -v₁[1, :, :] | |
| 154 | v[end, :, :] = v₁[end-1, :, :] | |
| 155 | ||
| 156 | v[:, 2:(end-1), :] += v₂[:, 1:(end-2), :] - v₂[:, 2:(end-1), :] | |
| 157 | v[:, 1, :] += -v₂[:, 1, :] | |
| 158 | v[:, end, :] += v₂[:, end-1, :] | |
| 159 | ||
| 160 | v[:, :, 2:(end-1)] += v₃[:, :, 1:(end-2)] - v₃[:, :, 2:(end-1)] | |
| 161 | v[:, :, 1] += -v₃[:, :, 1] | |
| 162 | v[:, :, end] += v₃[:, :, end-1] | |
| 163 | end | |
| 164 | return v | |
| 165 | end | |
| 166 | ||
| 167 | ########################################### | |
| 168 | # 3D forward differences for vector fields | |
| 169 | ########################################### | |
| 170 | ||
| 171 | function vec∇₃!(u₁,u₂,u₃,u) | |
| 172 | @. @views for j=1:size(u, 1) | |
| 173 | ∇₃!(u₁[j, :, :, :],u₂[j, :, :, :],u₃[j, :, :, :],u[j, :, :, :]) | |
| 174 | end | |
| 175 | return u₁, u₂, u₃ | |
| 176 | end | |
| 177 | ||
| 178 | function vec∇₃ᵀ!(u,v₁,v₂,v₃) | |
| 179 | @. @views for j=1:size(u, 1) | |
| 180 | ∇₃ᵀ!(u[j, :, :, :],v₁[j, :, :, :],v₂[j, :, :, :],v₃[j, :, :, :]) | |
| 181 | end | |
| 182 | return u | |
| 183 | end | |
| 184 | ||
| 185 | end # Module |