Mon, 18 Nov 2019 15:13:04 -0500
consistent signs
######################## # Discretised gradients ######################## module Gradient ############## # Our exports ############## export ∇₂!, ∇₂ᵀ!, ∇₂fold!, ∇₂_norm₂₂_est, ∇₂_norm₂₂_est², ∇₂_norm₂∞_est, ∇₂_norm₂∞_est², ∇₂c!, ∇₃!, ∇₃ᵀ!, vec∇₃!, vec∇₃ᵀ! ################## # Helper routines ################## @inline function imfold₂′!(f_aa!, f_a0!, f_ab!, f_0a!, f_00!, f_0b!, f_ba!, f_b0!, f_bb!, n, m, state) # First row state = f_aa!(state, (1, 1)) for j = 2:m-1 state = f_a0!(state, (1, j)) end state = f_ab!(state, (1, m)) # Middle rows for i=2:n-1 state = f_0a!(state, (i, 1)) for j = 2:m-1 state = f_00!(state, (i, j)) end state = f_0b!(state, (i, m)) end # Last row state = f_ba!(state, (n, 1)) for j =2:m-1 state = f_b0!(state, (n, j)) end return f_bb!(state, (n, m)) end ######################### # 2D forward differences ######################### ∇₂_norm₂₂_est² = 8 ∇₂_norm₂₂_est = √∇₂_norm₂₂_est² ∇₂_norm₂∞_est² = 2 ∇₂_norm₂∞_est = √∇₂_norm₂∞_est² function ∇₂!(u₁, u₂, u) @. @views begin u₁[1:(end-1), :] = u[2:end, :] - u[1:(end-1), :] u₁[end, :, :] = 0 u₂[:, 1:(end-1)] = u[:, 2:end] - u[:, 1:(end-1)] u₂[:, end] = 0 end return u₁, u₂ end function ∇₂!(v, u) ∇₂!(@view(v[1, :, :]), @view(v[2, :, :]), u) end @inline function ∇₂fold!(f!::Function, u, state) g! = (state, pt) -> begin (i, j) = pt g = @inbounds [u[i+1, j]-u[i, j], u[i, j+1]-u[i, j]] return f!(g, state, pt) end gr! = (state, pt) -> begin (i, j) = pt g = @inbounds [u[i+1, j]-u[i, j], 0.0] return f!(g, state, pt) end gb! = (state, pt) -> begin (i, j) = pt g = @inbounds [0.0, u[i, j+1]-u[i, j]] return f!(g, state, pt) end g0! = (state, pt) -> begin return f!([0.0, 0.0], state, pt) end return imfold₂′!(g!, g!, gr!, g!, g!, gr!, gb!, gb!, g0!, size(u, 1), size(u, 2), state) end function ∇₂ᵀ!(v, v₁, v₂) @. @views begin v[2:(end-1), :] = v₁[1:(end-2), :] - v₁[2:(end-1), :] v[1, :] = -v₁[1, :] v[end, :] = v₁[end-1, :] v[:, 2:(end-1)] += v₂[:, 1:(end-2)] - v₂[:, 2:(end-1)] v[:, 1] += -v₂[:, 1] v[:, end] += v₂[:, end-1] end return v end function ∇₂ᵀ!(u, v) ∇₂ᵀ!(u, @view(v[1, :, :]), @view(v[2, :, :])) end ################################################## # 2D central differences (partial implementation) ################################################## function ∇₂c!(v, u) @. @views begin v[1, 2:(end-1), :] = (u[3:end, :] - u[1:(end-2), :])/2 v[1, end, :] = (u[end, :] - u[end-1, :])/2 v[1, 1, :] = (u[2, :] - u[1, :])/2 v[2, :, 2:(end-1)] = (u[:, 3:end] - u[:, 1:(end-2)])/2 v[2, :, end] = (u[:, end] - u[:, end-1])/2 v[2, :, 1] = (u[:, 2] - u[:, 1])/2 end end ######################### # 3D forward differences ######################### function ∇₃!(u₁,u₂,u₃,u) @. @views begin u₁[1:(end-1), :, :] = u[2:end, :, :] - u[1:(end-1), :, :] u₁[end, :, :] = 0 u₂[:, 1:(end-1), :] = u[:, 2:end, :] - u[:, 1:(end-1), :] u₂[:, end, :] = 0 u₃[:, :, 1:(end-1)] = u[:, :, 2:end] - u[:, :, 1:(end-1)] u₃[:, :, end] = 0 end return u₁, u₂, u₃ end function ∇₃ᵀ!(v,v₁,v₂,v₃) @. @views begin v[2:(end-1), :, :] = v₁[1:(end-2), :, :] - v₁[2:(end-1), :, :] v[1, :, :] = -v₁[1, :, :] v[end, :, :] = v₁[end-1, :, :] v[:, 2:(end-1), :] += v₂[:, 1:(end-2), :] - v₂[:, 2:(end-1), :] v[:, 1, :] += -v₂[:, 1, :] v[:, end, :] += v₂[:, end-1, :] v[:, :, 2:(end-1)] += v₃[:, :, 1:(end-2)] - v₃[:, :, 2:(end-1)] v[:, :, 1] += -v₃[:, :, 1] v[:, :, end] += v₃[:, :, end-1] end return v end ########################################### # 3D forward differences for vector fields ########################################### function vec∇₃!(u₁,u₂,u₃,u) @. @views for j=1:size(u, 1) ∇₃!(u₁[j, :, :, :],u₂[j, :, :, :],u₃[j, :, :, :],u[j, :, :, :]) end return u₁, u₂, u₃ end function vec∇₃ᵀ!(u,v₁,v₂,v₃) @. @views for j=1:size(u, 1) ∇₃ᵀ!(u[j, :, :, :],v₁[j, :, :, :],v₂[j, :, :, :],v₃[j, :, :, :]) end return u end end # Module