Sat, 20 Feb 2021 16:26:31 -0500
Add "extra" string output to simple_iterate.
0 | 1 | ######################### |
2 | # Some utility functions | |
3 | ######################### | |
4 | ||
4
59fd17a3cea0
Add __precompile__() for what it is worth
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
5 | __precompile__() |
59fd17a3cea0
Add __precompile__() for what it is worth
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
6 | |
0 | 7 | module Util |
8 | ||
9 | ############## | |
10 | # Our exports | |
11 | ############## | |
12 | ||
13 | export map_first_slice!, | |
14 | reduce_first_slice, | |
19 | 15 | norm₁, |
0 | 16 | norm₂, |
17 | γnorm₂, | |
18 | norm₂w, | |
19 | norm₂², | |
20 | norm₂w², | |
21 | norm₂₁, | |
22 | γnorm₂₁, | |
23 | dot, | |
24 | mean, | |
25 | proj_norm₂₁ball!, | |
18 | 26 | proj_nonneg!, |
0 | 27 | curry, |
8 | 28 | ⬿, |
9 | 29 | @threadsif, |
10 | 30 | @background, |
31 | @backgroundif | |
8 | 32 | |
33 | ||
34 | ########## | |
35 | # Threads | |
36 | ########## | |
37 | ||
38 | macro threadsif(threads, loop) | |
39 | return esc(:(if $threads | |
40 | Threads.@threads $loop | |
10 | 41 | else |
8 | 42 | $loop |
10 | 43 | end)) |
8 | 44 | end |
0 | 45 | |
9 | 46 | macro background(bgtask, fgtask) |
47 | return :(t = Threads.@spawn $(esc(bgtask)); | |
48 | $(esc(fgtask)); | |
49 | wait(t)) | |
50 | end | |
51 | ||
10 | 52 | macro backgroundif(threads, bgtask, fgtask) |
53 | return :(if $(esc(threads)) | |
54 | @background $(esc(bgtask)) $(esc(fgtask)) | |
55 | else | |
56 | $(esc(bgtask)) | |
57 | $(esc(fgtask)) | |
58 | end) | |
59 | end | |
60 | ||
0 | 61 | ######################## |
62 | # Functional programming | |
63 | ######################### | |
64 | ||
65 | curry = (f::Function,y...)->(z...)->f(y...,z...) | |
66 | ||
67 | ############################### | |
68 | # For working with NamedTuples | |
69 | ############################### | |
70 | ||
71 | ⬿ = merge | |
72 | ||
73 | ###### | |
74 | # map | |
75 | ###### | |
76 | ||
77 | @inline function map_first_slice!(f!, y) | |
78 | for i in CartesianIndices(size(y)[2:end]) | |
79 | @inbounds f!(@view(y[:, i])) | |
80 | end | |
81 | end | |
82 | ||
83 | @inline function map_first_slice!(x, f!, y) | |
84 | for i in CartesianIndices(size(y)[2:end]) | |
85 | @inbounds f!(@view(x[:, i]), @view(y[:, i])) | |
86 | end | |
87 | end | |
88 | ||
89 | @inline function reduce_first_slice(f, y; init=0.0) | |
90 | accum=init | |
91 | for i in CartesianIndices(size(y)[2:end]) | |
92 | @inbounds accum=f(accum, @view(y[:, i])) | |
93 | end | |
94 | return accum | |
95 | end | |
96 | ||
97 | ########################### | |
98 | # Norms and inner products | |
99 | ########################### | |
100 | ||
101 | @inline function dot(x, y) | |
102 | @assert(length(x)==length(y)) | |
103 | ||
104 | accum=0 | |
105 | for i=1:length(y) | |
106 | @inbounds accum += x[i]*y[i] | |
107 | end | |
108 | return accum | |
109 | end | |
110 | ||
111 | @inline function norm₂w²(y, w) | |
112 | #Insane memory allocs | |
113 | #return @inbounds sum(i -> y[i]*y[i]*w[i], 1:length(y)) | |
114 | accum=0 | |
115 | for i=1:length(y) | |
116 | @inbounds accum=accum+y[i]*y[i]*w[i] | |
117 | end | |
118 | return accum | |
119 | end | |
120 | ||
121 | @inline function norm₂w(y, w) | |
122 | return √(norm₂w²(y, w)) | |
123 | end | |
124 | ||
125 | @inline function norm₂²(y) | |
126 | #Insane memory allocs | |
127 | #return @inbounds sum(i -> y[i]*y[i], 1:length(y)) | |
128 | accum=0 | |
129 | for i=1:length(y) | |
130 | @inbounds accum=accum+y[i]*y[i] | |
131 | end | |
132 | return accum | |
133 | end | |
134 | ||
135 | @inline function norm₂(y) | |
136 | return √(norm₂²(y)) | |
137 | end | |
138 | ||
19 | 139 | @inline function norm₁(y) |
140 | accum=0 | |
141 | for i=1:length(y) | |
142 | @inbounds accum=accum+abs(y[i]) | |
143 | end | |
144 | return accum | |
145 | end | |
146 | ||
0 | 147 | @inline function γnorm₂(y, γ) |
148 | hubersq = xsq -> begin | |
149 | x=√xsq | |
150 | return if x > γ | |
151 | x-γ/2 | |
152 | elseif x<-γ | |
153 | -x-γ/2 | |
154 | else | |
155 | xsq/(2γ) | |
156 | end | |
157 | end | |
158 | ||
159 | if γ==0 | |
160 | return norm₂(y) | |
161 | else | |
162 | return hubersq(norm₂²(y)) | |
163 | end | |
164 | end | |
165 | ||
166 | function norm₂₁(y) | |
167 | return reduce_first_slice((s, x) -> s+norm₂(x), y) | |
168 | end | |
169 | ||
170 | function γnorm₂₁(y,γ) | |
171 | return reduce_first_slice((s, x) -> s+γnorm₂(x, γ), y) | |
172 | end | |
173 | ||
174 | function mean(v) | |
175 | return sum(v)/prod(size(v)) | |
176 | end | |
177 | ||
178 | @inline function proj_norm₂₁ball!(y, α) | |
179 | α²=α*α | |
180 | ||
7 | 181 | if ndims(y)==3 && size(y, 1)==2 |
182 | @inbounds for i=1:size(y, 2) | |
183 | @simd for j=1:size(y, 3) | |
184 | n² = y[1,i,j]*y[1,i,j]+y[2,i,j]*y[2,i,j] | |
185 | if n²>α² | |
186 | v = α/√n² | |
187 | y[1, i, j] *= v | |
188 | y[2, i, j] *= v | |
189 | end | |
190 | end | |
191 | end | |
192 | else | |
193 | y′=reshape(y, (size(y, 1), prod(size(y)[2:end]))) | |
194 | ||
195 | @inbounds @simd for i=1:size(y′, 2)# in CartesianIndices(size(y)[2:end]) | |
196 | n² = norm₂²(@view(y′[:, i])) | |
197 | if n²>α² | |
198 | y′[:, i] .*= (α/√n²) | |
199 | end | |
0 | 200 | end |
201 | end | |
202 | end | |
203 | ||
18 | 204 | @inline function proj_nonneg!(y) |
205 | @inbounds @simd for i=1:length(y) | |
206 | if y[i] < 0 | |
207 | y[i] = 0 | |
208 | end | |
209 | end | |
210 | return y | |
211 | end | |
212 | ||
0 | 213 | end # Module |
214 |