Wed, 18 Dec 2019 21:32:27 +0200
put_unless_closed!
| 0 | 1 | ######################### |
| 2 | # Some utility functions | |
| 3 | ######################### | |
| 4 | ||
|
4
59fd17a3cea0
Add __precompile__() for what it is worth
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
5 | __precompile__() |
|
59fd17a3cea0
Add __precompile__() for what it is worth
Tuomo Valkonen <tuomov@iki.fi>
parents:
0
diff
changeset
|
6 | |
| 0 | 7 | module Util |
| 8 | ||
| 9 | ############## | |
| 10 | # Our exports | |
| 11 | ############## | |
| 12 | ||
| 13 | export map_first_slice!, | |
| 14 | reduce_first_slice, | |
| 15 | norm₂, | |
| 16 | γnorm₂, | |
| 17 | norm₂w, | |
| 18 | norm₂², | |
| 19 | norm₂w², | |
| 20 | norm₂₁, | |
| 21 | γnorm₂₁, | |
| 22 | dot, | |
| 23 | mean, | |
| 24 | proj_norm₂₁ball!, | |
| 25 | curry, | |
| 26 | ⬿ | |
| 27 | ||
| 28 | ######################## | |
| 29 | # Functional programming | |
| 30 | ######################### | |
| 31 | ||
| 32 | curry = (f::Function,y...)->(z...)->f(y...,z...) | |
| 33 | ||
| 34 | ############################### | |
| 35 | # For working with NamedTuples | |
| 36 | ############################### | |
| 37 | ||
| 38 | ⬿ = merge | |
| 39 | ||
| 40 | ###### | |
| 41 | # map | |
| 42 | ###### | |
| 43 | ||
| 44 | @inline function map_first_slice!(f!, y) | |
| 45 | for i in CartesianIndices(size(y)[2:end]) | |
| 46 | @inbounds f!(@view(y[:, i])) | |
| 47 | end | |
| 48 | end | |
| 49 | ||
| 50 | @inline function map_first_slice!(x, f!, y) | |
| 51 | for i in CartesianIndices(size(y)[2:end]) | |
| 52 | @inbounds f!(@view(x[:, i]), @view(y[:, i])) | |
| 53 | end | |
| 54 | end | |
| 55 | ||
| 56 | @inline function reduce_first_slice(f, y; init=0.0) | |
| 57 | accum=init | |
| 58 | for i in CartesianIndices(size(y)[2:end]) | |
| 59 | @inbounds accum=f(accum, @view(y[:, i])) | |
| 60 | end | |
| 61 | return accum | |
| 62 | end | |
| 63 | ||
| 64 | ########################### | |
| 65 | # Norms and inner products | |
| 66 | ########################### | |
| 67 | ||
| 68 | @inline function dot(x, y) | |
| 69 | @assert(length(x)==length(y)) | |
| 70 | ||
| 71 | accum=0 | |
| 72 | for i=1:length(y) | |
| 73 | @inbounds accum += x[i]*y[i] | |
| 74 | end | |
| 75 | return accum | |
| 76 | end | |
| 77 | ||
| 78 | @inline function norm₂w²(y, w) | |
| 79 | #Insane memory allocs | |
| 80 | #return @inbounds sum(i -> y[i]*y[i]*w[i], 1:length(y)) | |
| 81 | accum=0 | |
| 82 | for i=1:length(y) | |
| 83 | @inbounds accum=accum+y[i]*y[i]*w[i] | |
| 84 | end | |
| 85 | return accum | |
| 86 | end | |
| 87 | ||
| 88 | @inline function norm₂w(y, w) | |
| 89 | return √(norm₂w²(y, w)) | |
| 90 | end | |
| 91 | ||
| 92 | @inline function norm₂²(y) | |
| 93 | #Insane memory allocs | |
| 94 | #return @inbounds sum(i -> y[i]*y[i], 1:length(y)) | |
| 95 | accum=0 | |
| 96 | for i=1:length(y) | |
| 97 | @inbounds accum=accum+y[i]*y[i] | |
| 98 | end | |
| 99 | return accum | |
| 100 | end | |
| 101 | ||
| 102 | @inline function norm₂(y) | |
| 103 | return √(norm₂²(y)) | |
| 104 | end | |
| 105 | ||
| 106 | @inline function γnorm₂(y, γ) | |
| 107 | hubersq = xsq -> begin | |
| 108 | x=√xsq | |
| 109 | return if x > γ | |
| 110 | x-γ/2 | |
| 111 | elseif x<-γ | |
| 112 | -x-γ/2 | |
| 113 | else | |
| 114 | xsq/(2γ) | |
| 115 | end | |
| 116 | end | |
| 117 | ||
| 118 | if γ==0 | |
| 119 | return norm₂(y) | |
| 120 | else | |
| 121 | return hubersq(norm₂²(y)) | |
| 122 | end | |
| 123 | end | |
| 124 | ||
| 125 | function norm₂₁(y) | |
| 126 | return reduce_first_slice((s, x) -> s+norm₂(x), y) | |
| 127 | end | |
| 128 | ||
| 129 | function γnorm₂₁(y,γ) | |
| 130 | return reduce_first_slice((s, x) -> s+γnorm₂(x, γ), y) | |
| 131 | end | |
| 132 | ||
| 133 | function mean(v) | |
| 134 | return sum(v)/prod(size(v)) | |
| 135 | end | |
| 136 | ||
| 137 | @inline function proj_norm₂₁ball!(y, α) | |
| 138 | α²=α*α | |
| 139 | y′=reshape(y, (size(y, 1), prod(size(y)[2:end]))) | |
| 140 | ||
| 141 | @inbounds @simd for i=1:size(y′, 2)# in CartesianIndices(size(y)[2:end]) | |
| 142 | n² = norm₂²(@view(y′[:, i])) | |
| 143 | if n²>α² | |
| 144 | y′[:, i] .*= (α/√n²) | |
| 145 | end | |
| 146 | end | |
| 147 | end | |
| 148 | ||
| 149 | end # Module | |
| 150 |