Oops, some μ were x in the README.

Tue, 06 Dec 2022 15:02:49 +0200

author
Tuomo Valkonen <tuomov@iki.fi>
date
Tue, 06 Dec 2022 15:02:49 +0200
changeset 12
861f6c033646
parent 11
a3de2575cfc8
child 13
bdc57366d4f5

Oops, some μ were x in the README.

README.md file | annotate | diff | comparison | revisions
--- a/README.md	Tue Dec 06 14:12:38 2022 +0200
+++ b/README.md	Tue Dec 06 15:02:49 2022 +0200
@@ -5,11 +5,11 @@
 point source localisation_” by Tuomo Valkonen ⟨tuomov@iki.fi⟩. It concerns
 solution of problems of the type
 $$
-    \min_{μ ∈ ℳ(Ω)}~ F(x) + λ \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(x),
+    \min_{μ ∈ ℳ(Ω)}~ F(μ) + λ \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(μ),
 $$
 where $F$ is a data term, and $ℳ(Ω)$ is the space of Radon measures on the
-(rectangular) domain $Ω ⊂ ℝ^n$. Implemented are $F(x)=\frac12\|Ax-b\|_2^2$ and
-$F(x)=\|Ax-b\|_1$ for the forward operator $A \in 𝕃(ℳ(Ω); ℝ^m)$ modelling a
+(rectangular) domain $Ω ⊂ ℝ^n$. Implemented are $F(μ)=\frac12\|Aμ-b\|_2^2$ and
+$F(μ)=\|Aμ-b\|_1$ for the forward operator $A \in 𝕃(ℳ(Ω); ℝ^m)$ modelling a
 simple sensor grid. For the 2-norm-squared data term implemented are the
 algorithms μFB, μFISTA, and μPDPS from the aforementioned manuscript along with
 comparison relaxed and fully corrective conditional gradient methods from the

mercurial