src/pdps.rs

Thu, 29 Aug 2024 00:00:00 -0500

author
Tuomo Valkonen <tuomov@iki.fi>
date
Thu, 29 Aug 2024 00:00:00 -0500
branch
dev
changeset 34
efa60bc4f743
parent 32
56c8adc32b09
child 35
b087e3eab191
permissions
-rw-r--r--

Radon FB + sliding improvements

/*!
Solver for the point source localisation problem with primal-dual proximal splitting.

This corresponds to the manuscript

 * Valkonen T. - _Proximal methods for point source localisation_,
   [arXiv:2212.02991](https://arxiv.org/abs/2212.02991).

The main routine is [`pointsource_pdps`]. It is based on specilisatinn of
[`generic_pointsource_fb_reg`] through relevant [`FBSpecialisation`] implementations.
Both norm-2-squared and norm-1 data terms are supported. That is, implemented are solvers for
<div>
$$
    \min_{μ ∈ ℳ(Ω)}~ F_0(Aμ - b) + α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(μ),
$$
for both $F_0(y)=\frac{1}{2}\|y\|_2^2$ and  $F_0(y)=\|y\|_1$ with the forward operator
$A \in 𝕃(ℳ(Ω); ℝ^n)$.
</div>

## Approach

<p>
The problem above can be written as
$$
    \min_μ \max_y G(μ) + ⟨y, Aμ-b⟩ - F_0^*(μ),
$$
where $G(μ) = α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(μ)$.
The Fenchel–Rockafellar optimality conditions, employing the predual in $ℳ(Ω)$, are
$$
    0 ∈ A_*y + ∂G(μ)
    \quad\text{and}\quad
    Aμ - b ∈ ∂ F_0^*(y).
$$
The solution of the first part is as for forward-backward, treated in the manuscript.
This is the task of <code>generic_pointsource_fb</code>, where we use <code>FBSpecialisation</code>
to replace the specific residual $Aμ-b$ by $y$.
For $F_0(y)=\frac{1}{2}\|y\|_2^2$ the second part reads $y = Aμ -b$.
For $F_0(y)=\|y\|_1$ the second part reads $y ∈ ∂\|·\|_1(Aμ - b)$.
</p>

Based on zero initialisation for $μ$, we use the [`Subdifferentiable`] trait to make an
initialisation corresponding to the second part of the optimality conditions.
In the algorithm itself, standard proximal steps are taking with respect to $F\_0^* + ⟨b, ·⟩$.
*/

use numeric_literals::replace_float_literals;
use serde::{Serialize, Deserialize};
use nalgebra::DVector;
use clap::ValueEnum;

use alg_tools::iterate::{
    AlgIteratorFactory,
    AlgIteratorState,
};
use alg_tools::loc::Loc;
use alg_tools::euclidean::Euclidean;
use alg_tools::linops::Apply;
use alg_tools::norms::{
    Linfinity,
    Projection,
};
use alg_tools::bisection_tree::{
    BTFN,
    PreBTFN,
    Bounds,
    BTNodeLookup,
    BTNode,
    BTSearch,
    SupportGenerator,
    LocalAnalysis,
};
use alg_tools::mapping::RealMapping;
use alg_tools::nalgebra_support::ToNalgebraRealField;
use alg_tools::linops::AXPY;

use crate::types::*;
use crate::measures::DiscreteMeasure;
use crate::measures::merging::SpikeMerging;
use crate::forward_model::ForwardModel;
use crate::seminorms::DiscreteMeasureOp;
use crate::plot::{
    SeqPlotter,
    Plotting,
    PlotLookup
};
use crate::fb::{
    FBGenericConfig,
    insert_and_reweigh,
    postprocess,
    prune_and_maybe_simple_merge
};
use crate::regularisation::RegTerm;
use crate::dataterm::{
    DataTerm,
    L2Squared,
    L1
};

/// Acceleration
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, ValueEnum, Debug)]
pub enum Acceleration {
    /// No acceleration
    #[clap(name = "none")]
    None,
    /// Partial acceleration, $ω = 1/\sqrt{1+σ}$
    #[clap(name = "partial", help = "Partial acceleration, ω = 1/√(1+σ)")]
    Partial,
    /// Full acceleration, $ω = 1/\sqrt{1+2σ}$; no gap convergence guaranteed
    #[clap(name = "full", help = "Full acceleration, ω = 1/√(1+2σ); no gap convergence guaranteed")]
    Full
}

/// Settings for [`pointsource_pdps`].
#[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)]
#[serde(default)]
pub struct PDPSConfig<F : Float> {
    /// Primal step length scaling. We must have `τ0 * σ0 < 1`.
    pub τ0 : F,
    /// Dual step length scaling. We must have `τ0 * σ0 < 1`.
    pub σ0 : F,
    /// Accelerate if available
    pub acceleration : Acceleration,
    /// Generic parameters
    pub generic : FBGenericConfig<F>,
}

#[replace_float_literals(F::cast_from(literal))]
impl<F : Float> Default for PDPSConfig<F> {
    fn default() -> Self {
        let τ0 = 0.5;
        PDPSConfig {
            τ0,
            σ0 : 0.99/τ0,
            acceleration : Acceleration::Partial,
            generic : Default::default(),
        }
    }
}

/// Trait for data terms for the PDPS
#[replace_float_literals(F::cast_from(literal))]
pub trait PDPSDataTerm<F : Float, V, const N : usize> : DataTerm<F, V, N> {
    /// Calculate some subdifferential at `x` for the conjugate
    fn some_subdifferential(&self, x : V) -> V;

    /// Factor of strong convexity of the conjugate
    #[inline]
    fn factor_of_strong_convexity(&self) -> F {
        0.0
    }

    /// Perform dual update
    fn dual_update(&self, _y : &mut V, _y_prev : &V, _σ : F);
}


#[replace_float_literals(F::cast_from(literal))]
impl<F : Float, V :  Euclidean<F> + AXPY<F>, const N : usize>
PDPSDataTerm<F, V, N>
for L2Squared {
    fn some_subdifferential(&self, x : V) -> V { x }

    fn factor_of_strong_convexity(&self) -> F {
        1.0
    }

    #[inline]
    fn dual_update(&self, y : &mut V, y_prev : &V, σ : F) {
        y.axpy(1.0 / (1.0 + σ), &y_prev, σ / (1.0 + σ));
    }
}

#[replace_float_literals(F::cast_from(literal))]
impl<F : Float + nalgebra::RealField, const N : usize>
PDPSDataTerm<F, DVector<F>, N>
for L1 {
    fn some_subdifferential(&self, mut x : DVector<F>) -> DVector<F> {
        // nalgebra sucks for providing second copies of the same stuff that's elsewhere as well.
        x.iter_mut()
         .for_each(|v| if *v != F::ZERO { *v = *v/<F as NumTraitsFloat>::abs(*v) });
        x
    }

     #[inline]
     fn dual_update(&self, y : &mut DVector<F>, y_prev : &DVector<F>, σ : F) {
        y.axpy(1.0, y_prev, σ);
        y.proj_ball_mut(1.0, Linfinity);
    }
}

/// Iteratively solve the pointsource localisation problem using primal-dual proximal splitting.
///
/// The `dataterm` should be either [`L1`] for norm-1 data term or [`L2Squared`] for norm-2-squared.
/// The settings in `config` have their [respective documentation](PDPSConfig). `opA` is the
/// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight.
/// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution
/// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control
/// as documented in [`alg_tools::iterate`].
///
/// For the mathematical formulation, see the [module level](self) documentation and the manuscript.
///
/// Returns the final iterate.
#[replace_float_literals(F::cast_from(literal))]
pub fn pointsource_pdps_reg<'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, D, Reg, const N : usize>(
    opA : &'a A,
    b : &'a A::Observable,
    reg : Reg,
    op𝒟 : &'a 𝒟,
    pdpsconfig : &PDPSConfig<F>,
    iterator : I,
    mut plotter : SeqPlotter<F, N>,
    dataterm : D,
) -> DiscreteMeasure<Loc<F, N>, F>
where F : Float + ToNalgebraRealField,
      I : AlgIteratorFactory<IterInfo<F, N>>,
      for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>
                                  + std::ops::Add<A::Observable, Output=A::Observable>,
                                  //+ std::ops::Mul<F, Output=A::Observable>, // <-- FIXME: compiler overflow
      A::Observable : std::ops::MulAssign<F>,
      GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone,
      A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>>
          + Lipschitz<&'a 𝒟, FloatType=F>,
      BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>,
      G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone,
      𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>,
      𝒟::Codomain : RealMapping<F, N>,
      S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>,
      K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>,
      BTNodeLookup: BTNode<F, usize, Bounds<F>, N>,
      PlotLookup : Plotting<N>,
      DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F>,
      D : PDPSDataTerm<F, A::Observable, N>,
      Reg : RegTerm<F, N> {

    // Set up parameters
    let config = &pdpsconfig.generic;
    let op𝒟norm = op𝒟.opnorm_bound();
    let l = opA.lipschitz_factor(&op𝒟).unwrap().sqrt();
    let mut τ = pdpsconfig.τ0 / l;
    let mut σ = pdpsconfig.σ0 / l;
    let γ = dataterm.factor_of_strong_convexity();

    // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled
    // by τ compared to the conditional gradient approach.
    let tolerance = config.tolerance * τ * reg.tolerance_scaling();
    let mut ε = tolerance.initial();

    // Initialise iterates
    let mut μ = DiscreteMeasure::new();
    let mut y = dataterm.some_subdifferential(-b);
    let mut y_prev = y.clone();
    let mut stats = IterInfo::new();

    // Run the algorithm
    iterator.iterate(|state| {
        // Calculate smooth part of surrogate model.
        // Using `std::mem::replace` here is not ideal, and expects that `empty_observable`
        // has no significant overhead. For some reosn Rust doesn't allow us simply moving
        // the residual and replacing it below before the end of this closure.
        y *= -τ;
        let r = std::mem::replace(&mut y, opA.empty_observable());
        let minus_τv = opA.preadjoint().apply(r);

        // Save current base point
        let μ_base = μ.clone();
        
        // Insert and reweigh
        let (d, within_tolerances) = insert_and_reweigh(
            &mut μ, &minus_τv, &μ_base, None,
            op𝒟, op𝒟norm,
            τ, ε,
            config, &reg, state, &mut stats
        );

        // Prune and possibly merge spikes
        prune_and_maybe_simple_merge(
            &mut μ, &minus_τv, &μ_base,
            op𝒟,
            τ, ε,
            config, &reg, state, &mut stats
        );

        // Update step length parameters
        let ω = match pdpsconfig.acceleration {
            Acceleration::None => 1.0,
            Acceleration::Partial => {
                let ω = 1.0 / (1.0 + γ * σ).sqrt();
                σ = σ * ω;
                τ = τ / ω;
                ω
            },
            Acceleration::Full => {
                let ω = 1.0 / (1.0 + 2.0 * γ * σ).sqrt();
                σ = σ * ω;
                τ = τ / ω;
                ω
            },
        };

        // Do dual update
        y = b.clone();                          // y = b
        opA.gemv(&mut y, 1.0 + ω, &μ, -1.0);    // y = A[(1+ω)μ^{k+1}]-b
        opA.gemv(&mut y, -ω, &μ_base, 1.0);     // y = A[(1+ω)μ^{k+1} - ω μ^k]-b
        dataterm.dual_update(&mut y, &y_prev, σ);
        y_prev.copy_from(&y);

        // Update main tolerance for next iteration
        let ε_prev = ε;
        ε = tolerance.update(ε, state.iteration());
        stats.this_iters += 1;

        // Give function value if needed
        state.if_verbose(|| {
            // Plot if so requested
            plotter.plot_spikes(
                format!("iter {} end; {}", state.iteration(), within_tolerances), &d,
                "start".to_string(), Some(&minus_τv),
                reg.target_bounds(τ, ε_prev), &μ,
            );
            // Calculate mean inner iterations and reset relevant counters.
            // Return the statistics
            let res = IterInfo {
                value : dataterm.calculate_fit_op(&μ, opA, b) + reg.apply(&μ),
                n_spikes : μ.len(),
                ε : ε_prev,
                postprocessing: config.postprocessing.then(|| μ.clone()),
                .. stats
            };
            stats = IterInfo::new();
            res
        })
    });

    postprocess(μ, config, dataterm, opA, b)
}

mercurial