Fri, 02 Dec 2022 18:14:03 +0200
Clean up / remove various unused FB algorithm family hacks.
/*! This module implements the convolution operators $𝒟$. The principal data type of the module is [`ConvolutionOp`] and the main abstraction the trait [`DiscreteMeasureOp`]. */ use std::iter::Zip; use std::ops::RangeFrom; use alg_tools::types::*; use alg_tools::loc::Loc; use alg_tools::sets::Cube; use alg_tools::bisection_tree::*; use alg_tools::mapping::RealMapping; use alg_tools::iter::{Mappable, FilterMapX}; use alg_tools::linops::{Apply, Linear, BoundedLinear}; use alg_tools::nalgebra_support::ToNalgebraRealField; use crate::measures::{DiscreteMeasure, DeltaMeasure, SpikeIter}; use nalgebra::DMatrix; use std::marker::PhantomData; use itertools::Itertools; /// Abstraction for operators $𝒟 ∈ 𝕃(𝒵(Ω); C_c(Ω))$. /// /// Here $𝒵(Ω) ⊂ ℳ(Ω)$ is the space of sums of delta measures, presented by [`DiscreteMeasure`]. pub trait DiscreteMeasureOp<Domain, F> : BoundedLinear<DiscreteMeasure<Domain, F>, FloatType=F> where F : Float + ToNalgebraRealField, Domain : 'static { /// The output type of [`Self::preapply`]. type PreCodomain; /// Creates a finite-dimensional presentatin of the operator restricted to a fixed support. /// /// <p> /// This returns the matrix $C_*𝒟C$, where $C ∈ 𝕃(ℝ^n; 𝒵(Ω))$, $Ca = ∑_{i=1}^n α_i δ_{x_i}$ /// for a $x_1, …, x_n$ the coordinates given by the iterator `I`, and $a=(α_1,…,α_n)$. /// Here $C_* ∈ 𝕃(C_c(Ω); ℝ^n) $ stands for the preadjoint. /// </p> fn findim_matrix<'a, I>(&self, points : I) -> DMatrix<F::MixedType> where I : ExactSizeIterator<Item=&'a Domain> + Clone; /// [`Apply::apply`] that typically returns an uninitialised [`PreBTFN`] /// instead of a full [`BTFN`]. fn preapply(&self, μ : DiscreteMeasure<Domain, F>) -> Self::PreCodomain; } // Blanket implementation of a measure as a linear functional over a predual // (that by assumption is a linear functional over a measure). /*impl<F, Domain, Predual> Linear<Predual> for DiscreteMeasure<Domain, F> where F : Float + ToNalgebraRealField, Predual : Linear<DiscreteMeasure<Domain, F>, Codomain=F> { type Codomain = F; #[inline] fn apply(&self, ω : &Predual) -> F { ω.apply(self) } }*/ // // Convolutions for discrete measures // /// A trait alias for simple convolution kernels. pub trait SimpleConvolutionKernel<F : Float, const N : usize> : RealMapping<F, N> + Support<F, N> + Bounded<F> + Clone + 'static {} impl<T, F : Float, const N : usize> SimpleConvolutionKernel<F, N> for T where T : RealMapping<F, N> + Support<F, N> + Bounded<F> + Clone + 'static {} /// [`SupportGenerator`] for [`ConvolutionOp`]. #[derive(Clone,Debug)] pub struct ConvolutionSupportGenerator<F : Float, K, const N : usize> where K : SimpleConvolutionKernel<F, N> { kernel : K, centres : DiscreteMeasure<Loc<F, N>, F>, } impl<F : Float, K, const N : usize> ConvolutionSupportGenerator<F, K, N> where K : SimpleConvolutionKernel<F, N> { /// Construct the convolution kernel corresponding to `δ`, i.e., one centered at `δ.x` and /// weighted by `δ.α`. #[inline] fn construct_kernel<'a>(&'a self, δ : &'a DeltaMeasure<Loc<F, N>, F>) -> Weighted<Shift<K, F, N>, F> { self.kernel.clone().shift(δ.x).weigh(δ.α) } /// This is a helper method for the implementation of [`ConvolutionSupportGenerator::all_data`]. /// It filters out `δ` with zero weight, and otherwise returns the corresponding convolution /// kernel. The `id` is passed through as-is. #[inline] fn construct_kernel_and_id_filtered<'a>( &'a self, (id, δ) : (usize, &'a DeltaMeasure<Loc<F, N>, F>) ) -> Option<(usize, Weighted<Shift<K, F, N>, F>)> { (δ.α != F::ZERO).then(|| (id.into(), self.construct_kernel(δ))) } } impl<F : Float, K, const N : usize> SupportGenerator<F, N> for ConvolutionSupportGenerator<F, K, N> where K : SimpleConvolutionKernel<F, N> { type Id = usize; type SupportType = Weighted<Shift<K, F, N>, F>; type AllDataIter<'a> = FilterMapX<'a, Zip<RangeFrom<usize>, SpikeIter<'a, Loc<F, N>, F>>, Self, (Self::Id, Self::SupportType)>; #[inline] fn support_for(&self, d : Self::Id) -> Self::SupportType { self.construct_kernel(&self.centres[d]) } #[inline] fn support_count(&self) -> usize { self.centres.len() } #[inline] fn all_data(&self) -> Self::AllDataIter<'_> { (0..).zip(self.centres.iter_spikes()) .filter_mapX(self, Self::construct_kernel_and_id_filtered) } } /// Representation of a convolution operator $𝒟$. #[derive(Clone,Debug)] pub struct ConvolutionOp<F, K, BT, const N : usize> where F : Float + ToNalgebraRealField, BT : BTImpl<F, N, Data=usize>, K : SimpleConvolutionKernel<F, N> { /// Depth of the [`BT`] bisection tree for the outputs [`Apply::apply`]. depth : BT::Depth, /// Domain of the [`BT`] bisection tree for the outputs [`Apply::apply`]. domain : Cube<F, N>, /// The convolution kernel kernel : K, _phantoms : PhantomData<(F,BT)>, } impl<F, K, BT, const N : usize> ConvolutionOp<F, K, BT, N> where F : Float + ToNalgebraRealField, BT : BTImpl<F, N, Data=usize>, K : SimpleConvolutionKernel<F, N> { /// Creates a new convolution operator $𝒟$ with `kernel` on `domain`. /// /// The output of [`Apply::apply`] is a [`BT`] of given `depth`. pub fn new(depth : BT::Depth, domain : Cube<F, N>, kernel : K) -> Self { ConvolutionOp { depth : depth, domain : domain, kernel : kernel, _phantoms : PhantomData } } /// Returns the support generator for this convolution operator. fn support_generator(&self, μ : DiscreteMeasure<Loc<F, N>, F>) -> ConvolutionSupportGenerator<F, K, N> { // TODO: can we avoid cloning μ? ConvolutionSupportGenerator { kernel : self.kernel.clone(), centres : μ } } /// Returns a reference to the kernel of this convolution operator. pub fn kernel(&self) -> &K { &self.kernel } } impl<F, K, BT, const N : usize> Apply<DiscreteMeasure<Loc<F, N>, F>> for ConvolutionOp<F, K, BT, N> where F : Float + ToNalgebraRealField, BT : BTImpl<F, N, Data=usize>, K : SimpleConvolutionKernel<F, N>, Weighted<Shift<K, F, N>, F> : LocalAnalysis<F, BT::Agg, N> { type Output = BTFN<F, ConvolutionSupportGenerator<F, K, N>, BT, N>; fn apply(&self, μ : DiscreteMeasure<Loc<F, N>, F>) -> Self::Output { let g = self.support_generator(μ); BTFN::construct(self.domain.clone(), self.depth, g) } } impl<'a, F, K, BT, const N : usize> Apply<&'a DiscreteMeasure<Loc<F, N>, F>> for ConvolutionOp<F, K, BT, N> where F : Float + ToNalgebraRealField, BT : BTImpl<F, N, Data=usize>, K : SimpleConvolutionKernel<F, N>, Weighted<Shift<K, F, N>, F> : LocalAnalysis<F, BT::Agg, N> { type Output = BTFN<F, ConvolutionSupportGenerator<F, K, N>, BT, N>; fn apply(&self, μ : &'a DiscreteMeasure<Loc<F, N>, F>) -> Self::Output { self.apply(μ.clone()) } } /// [`ConvolutionOp`]s as linear operators over [`DiscreteMeasure`]s. impl<F, K, BT, const N : usize> Linear<DiscreteMeasure<Loc<F, N>, F>> for ConvolutionOp<F, K, BT, N> where F : Float + ToNalgebraRealField, BT : BTImpl<F, N, Data=usize>, K : SimpleConvolutionKernel<F, N>, Weighted<Shift<K, F, N>, F> : LocalAnalysis<F, BT::Agg, N> { type Codomain = BTFN<F, ConvolutionSupportGenerator<F, K, N>, BT, N>; } impl<F, K, BT, const N : usize> Apply<DeltaMeasure<Loc<F, N>, F>> for ConvolutionOp<F, K, BT, N> where F : Float + ToNalgebraRealField, BT : BTImpl<F, N, Data=usize>, K : SimpleConvolutionKernel<F, N> { type Output = Weighted<Shift<K, F, N>, F>; #[inline] fn apply(&self, δ : DeltaMeasure<Loc<F, N>, F>) -> Self::Output { self.kernel.clone().shift(δ.x).weigh(δ.α) } } impl<'a, F, K, BT, const N : usize> Apply<&'a DeltaMeasure<Loc<F, N>, F>> for ConvolutionOp<F, K, BT, N> where F : Float + ToNalgebraRealField, BT : BTImpl<F, N, Data=usize>, K : SimpleConvolutionKernel<F, N> { type Output = Weighted<Shift<K, F, N>, F>; #[inline] fn apply(&self, δ : &'a DeltaMeasure<Loc<F, N>, F>) -> Self::Output { self.kernel.clone().shift(δ.x).weigh(δ.α) } } /// [`ConvolutionOp`]s as linear operators over [`DeltaMeasure`]s. /// /// The codomain is different from the implementation for [`DiscreteMeasure`]. impl<F, K, BT, const N : usize> Linear<DeltaMeasure<Loc<F, N>, F>> for ConvolutionOp<F, K, BT, N> where F : Float + ToNalgebraRealField, BT : BTImpl<F, N, Data=usize>, K : SimpleConvolutionKernel<F, N> { type Codomain = Weighted<Shift<K, F, N>, F>; } impl<F, K, BT, const N : usize> BoundedLinear<DiscreteMeasure<Loc<F, N>, F>> for ConvolutionOp<F, K, BT, N> where F : Float + ToNalgebraRealField, BT : BTImpl<F, N, Data=usize>, K : SimpleConvolutionKernel<F, N>, Weighted<Shift<K, F, N>, F> : LocalAnalysis<F, BT::Agg, N> { type FloatType = F; fn opnorm_bound(&self) -> F { // With μ = ∑_i α_i δ_{x_i}, we have // |𝒟μ|_∞ // = sup_z |∑_i α_i φ(z - x_i)| // ≤ sup_z ∑_i |α_i| |φ(z - x_i)| // ≤ ∑_i |α_i| |φ|_∞ // = |μ|_ℳ |φ|_∞ self.kernel.bounds().uniform() } } impl<F, K, BT, const N : usize> DiscreteMeasureOp<Loc<F, N>, F> for ConvolutionOp<F, K, BT, N> where F : Float + ToNalgebraRealField, BT : BTImpl<F, N, Data=usize>, K : SimpleConvolutionKernel<F, N>, Weighted<Shift<K, F, N>, F> : LocalAnalysis<F, BT::Agg, N> { type PreCodomain = PreBTFN<F, ConvolutionSupportGenerator<F, K, N>, N>; fn findim_matrix<'a, I>(&self, points : I) -> DMatrix<F::MixedType> where I : ExactSizeIterator<Item=&'a Loc<F,N>> + Clone { // TODO: Preliminary implementation. It be best to use sparse matrices or // possibly explicit operators without matrices let n = points.len(); let points_clone = points.clone(); let pairs = points.cartesian_product(points_clone); let kernel = &self.kernel; let values = pairs.map(|(x, y)| kernel.apply(y-x).to_nalgebra_mixed()); DMatrix::from_iterator(n, n, values) } /// A version of [`Apply::apply`] that does not instantiate the [`BTFN`] codomain with /// a bisection tree, instead returning a [`PreBTFN`]. This can improve performance when /// the output is to be added as the right-hand-side operand to a proper BTFN. fn preapply(&self, μ : DiscreteMeasure<Loc<F, N>, F>) -> Self::PreCodomain { BTFN::new_pre(self.support_generator(μ)) } } /// Generates an scalar operation (e.g. [`std::ops::Mul`], [`std::ops::Div`]) /// for [`ConvolutionSupportGenerator`]. macro_rules! make_convolutionsupportgenerator_scalarop_rhs { ($trait:ident, $fn:ident, $trait_assign:ident, $fn_assign:ident) => { impl<F : Float, K : SimpleConvolutionKernel<F, N>, const N : usize> std::ops::$trait_assign<F> for ConvolutionSupportGenerator<F, K, N> { fn $fn_assign(&mut self, t : F) { self.centres.$fn_assign(t); } } impl<F : Float, K : SimpleConvolutionKernel<F, N>, const N : usize> std::ops::$trait<F> for ConvolutionSupportGenerator<F, K, N> { type Output = ConvolutionSupportGenerator<F, K, N>; fn $fn(mut self, t : F) -> Self::Output { std::ops::$trait_assign::$fn_assign(&mut self.centres, t); self } } impl<'a, F : Float, K : SimpleConvolutionKernel<F, N>, const N : usize> std::ops::$trait<F> for &'a ConvolutionSupportGenerator<F, K, N> { type Output = ConvolutionSupportGenerator<F, K, N>; fn $fn(self, t : F) -> Self::Output { ConvolutionSupportGenerator{ kernel : self.kernel.clone(), centres : (&self.centres).$fn(t), } } } } } make_convolutionsupportgenerator_scalarop_rhs!(Mul, mul, MulAssign, mul_assign); make_convolutionsupportgenerator_scalarop_rhs!(Div, div, DivAssign, div_assign); /// Generates an unary operation (e.g. [`std::ops::Neg`]) for [`ConvolutionSupportGenerator`]. macro_rules! make_convolutionsupportgenerator_unaryop { ($trait:ident, $fn:ident) => { impl<F : Float, K : SimpleConvolutionKernel<F, N>, const N : usize> std::ops::$trait for ConvolutionSupportGenerator<F, K, N> { type Output = ConvolutionSupportGenerator<F, K, N>; fn $fn(mut self) -> Self::Output { self.centres = self.centres.$fn(); self } } impl<'a, F : Float, K : SimpleConvolutionKernel<F, N>, const N : usize> std::ops::$trait for &'a ConvolutionSupportGenerator<F, K, N> { type Output = ConvolutionSupportGenerator<F, K, N>; fn $fn(self) -> Self::Output { ConvolutionSupportGenerator{ kernel : self.kernel.clone(), centres : (&self.centres).$fn(), } } } } } make_convolutionsupportgenerator_unaryop!(Neg, neg); /// Trait for indicating that `Self` is Lipschitz with respect to the seminorm `D`. pub trait Lipschitz<D> { /// The type of floats type FloatType : Float; /// Returns the Lipschitz factor of `self` with respect to the seminorm `D`. fn lipschitz_factor(&self, seminorm : &D) -> Option<Self::FloatType>; }