Sun, 11 Dec 2022 23:19:17 +0200
Print out experiment information when running it
/*! Solver for the point source localisation problem using a forward-backward splitting method. This corresponds to the manuscript * Valkonen T. - _Proximal methods for point source localisation_, [arXiv:2212.02991](https://arxiv.org/abs/2212.02991). The main routine is [`pointsource_fb`]. It is based on [`generic_pointsource_fb`], which is also used by our [primal-dual proximal splitting][crate::pdps] implementation. FISTA-type inertia can also be enabled through [`FBConfig::meta`]. ## Problem <p> Our objective is to solve $$ \min_{μ ∈ ℳ(Ω)}~ F_0(Aμ-b) + α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(μ), $$ where $F_0(y)=\frac{1}{2}\|y\|_2^2$ and the forward operator $A \in 𝕃(ℳ(Ω); ℝ^n)$. </p> ## Approach <p> As documented in more detail in the paper, on each step we approximately solve $$ \min_{μ ∈ ℳ(Ω)}~ F(x) + α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(x) + \frac{1}{2}\|μ-μ^k|_𝒟^2, $$ where $𝒟: 𝕃(ℳ(Ω); C_c(Ω))$ is typically a convolution operator. </p> ## Finite-dimensional subproblems. With $C$ a projection from [`DiscreteMeasure`] to the weights, and $x^k$ such that $x^k=Cμ^k$, we form the discretised linearised inner problem <p> $$ \min_{x ∈ ℝ^n}~ τ\bigl(F(Cx^k) + [C^*∇F(Cx^k)]^⊤(x-x^k) + α {\vec 1}^⊤ x\bigr) + δ_{≥ 0}(x) + \frac{1}{2}\|x-x^k\|_{C^*𝒟C}^2, $$ equivalently $$ \begin{aligned} \min_x~ & τF(Cx^k) - τ[C^*∇F(Cx^k)]^⊤x^k + \frac{1}{2} (x^k)^⊤ C^*𝒟C x^k \\ & - [C^*𝒟C x^k - τC^*∇F(Cx^k)]^⊤ x \\ & + \frac{1}{2} x^⊤ C^*𝒟C x + τα {\vec 1}^⊤ x + δ_{≥ 0}(x), \end{aligned} $$ In other words, we obtain the quadratic non-negativity constrained problem $$ \min_{x ∈ ℝ^n}~ \frac{1}{2} x^⊤ à x - b̃^⊤ x + c + τα {\vec 1}^⊤ x + δ_{≥ 0}(x). $$ where $$ \begin{aligned} à & = C^*𝒟C, \\ g̃ & = C^*𝒟C x^k - τ C^*∇F(Cx^k) = C^* 𝒟 μ^k - τ C^*A^*(Aμ^k - b) \\ c & = τ F(Cx^k) - τ[C^*∇F(Cx^k)]^⊤x^k + \frac{1}{2} (x^k)^⊤ C^*𝒟C x^k \\ & = \frac{τ}{2} \|Aμ^k-b\|^2 - τ[Aμ^k-b]^⊤Aμ^k + \frac{1}{2} \|μ_k\|_{𝒟}^2 \\ & = -\frac{τ}{2} \|Aμ^k-b\|^2 + τ[Aμ^k-b]^⊤ b + \frac{1}{2} \|μ_k\|_{𝒟}^2. \end{aligned} $$ </p> We solve this with either SSN or FB via [`quadratic_nonneg`] as determined by [`InnerSettings`] in [`FBGenericConfig::inner`]. */ use numeric_literals::replace_float_literals; use serde::{Serialize, Deserialize}; use colored::Colorize; use nalgebra::DVector; use alg_tools::iterate::{ AlgIteratorFactory, AlgIteratorState, }; use alg_tools::euclidean::Euclidean; use alg_tools::norms::Norm; use alg_tools::linops::Apply; use alg_tools::sets::Cube; use alg_tools::loc::Loc; use alg_tools::bisection_tree::{ BTFN, PreBTFN, Bounds, BTNodeLookup, BTNode, BTSearch, P2Minimise, SupportGenerator, LocalAnalysis, Bounded, }; use alg_tools::mapping::RealMapping; use alg_tools::nalgebra_support::ToNalgebraRealField; use crate::types::*; use crate::measures::{ DiscreteMeasure, DeltaMeasure, Radon }; use crate::measures::merging::{ SpikeMergingMethod, SpikeMerging, }; use crate::forward_model::ForwardModel; use crate::seminorms::{ DiscreteMeasureOp, Lipschitz }; use crate::subproblem::{ quadratic_nonneg, InnerSettings, InnerMethod, }; use crate::tolerance::Tolerance; use crate::plot::{ SeqPlotter, Plotting, PlotLookup }; /// Method for constructing $μ$ on each iteration #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] #[allow(dead_code)] pub enum InsertionStyle { /// Resuse previous $μ$ from previous iteration, optimising weights /// before inserting new spikes. Reuse, /// Start each iteration with $μ=0$. Zero, } /// Meta-algorithm type #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] #[allow(dead_code)] pub enum FBMetaAlgorithm { /// No meta-algorithm None, /// FISTA-style inertia InertiaFISTA, } /// Settings for [`pointsource_fb`]. #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] #[serde(default)] pub struct FBConfig<F : Float> { /// Step length scaling pub τ0 : F, /// Meta-algorithm to apply pub meta : FBMetaAlgorithm, /// Generic parameters pub insertion : FBGenericConfig<F>, } /// Settings for the solution of the stepwise optimality condition in algorithms based on /// [`generic_pointsource_fb`]. #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] #[serde(default)] pub struct FBGenericConfig<F : Float> { /// Method for constructing $μ$ on each iteration; see [`InsertionStyle`]. pub insertion_style : InsertionStyle, /// Tolerance for point insertion. pub tolerance : Tolerance<F>, /// Stop looking for predual maximum (where to isert a new point) below /// `tolerance` multiplied by this factor. pub insertion_cutoff_factor : F, /// Settings for branch and bound refinement when looking for predual maxima pub refinement : RefinementSettings<F>, /// Maximum insertions within each outer iteration pub max_insertions : usize, /// Pair `(n, m)` for maximum insertions `m` on first `n` iterations. pub bootstrap_insertions : Option<(usize, usize)>, /// Inner method settings pub inner : InnerSettings<F>, /// Spike merging method pub merging : SpikeMergingMethod<F>, /// Tolerance multiplier for merges pub merge_tolerance_mult : F, /// Spike merging method after the last step pub final_merging : SpikeMergingMethod<F>, /// Iterations between merging heuristic tries pub merge_every : usize, /// Save $μ$ for postprocessing optimisation pub postprocessing : bool } #[replace_float_literals(F::cast_from(literal))] impl<F : Float> Default for FBConfig<F> { fn default() -> Self { FBConfig { τ0 : 0.99, meta : FBMetaAlgorithm::None, insertion : Default::default() } } } #[replace_float_literals(F::cast_from(literal))] impl<F : Float> Default for FBGenericConfig<F> { fn default() -> Self { FBGenericConfig { insertion_style : InsertionStyle::Reuse, tolerance : Default::default(), insertion_cutoff_factor : 1.0, refinement : Default::default(), max_insertions : 100, //bootstrap_insertions : None, bootstrap_insertions : Some((10, 1)), inner : InnerSettings { method : InnerMethod::SSN, .. Default::default() }, merging : SpikeMergingMethod::None, //merging : Default::default(), final_merging : Default::default(), merge_every : 10, merge_tolerance_mult : 2.0, postprocessing : false, } } } /// Trait for specialisation of [`generic_pointsource_fb`] to basic FB, FISTA. /// /// The idea is that the residual $Aμ - b$ in the forward step can be replaced by an arbitrary /// value. For example, to implement [primal-dual proximal splitting][crate::pdps] we replace it /// with the dual variable $y$. We can then also implement alternative data terms, as the /// (pre)differential of $F(μ)=F\_0(Aμ-b)$ is $F\'(μ) = A\_*F\_0\'(Aμ-b)$. In the case of the /// quadratic fidelity $F_0(y)=\frac{1}{2}\\|y\\|_2^2$ in a Hilbert space, of course, /// $F\_0\'(Aμ-b)=Aμ-b$ is the residual. pub trait FBSpecialisation<F : Float, Observable : Euclidean<F>, const N : usize> : Sized { /// Updates the residual and does any necessary pruning of `μ`. /// /// Returns the new residual and possibly a new step length. /// /// The measure `μ` may also be modified to apply, e.g., inertia to it. /// The updated residual should correspond to the residual at `μ`. /// See the [trait documentation][FBSpecialisation] for the use and meaning of the residual. /// /// The parameter `μ_base` is the base point of the iteration, typically the previous iterate, /// but for, e.g., FISTA has inertia applied to it. fn update( &mut self, μ : &mut DiscreteMeasure<Loc<F, N>, F>, μ_base : &DiscreteMeasure<Loc<F, N>, F>, ) -> (Observable, Option<F>); /// Calculates the data term value corresponding to iterate `μ` and available residual. /// /// Inertia and other modifications, as deemed, necessary, should be applied to `μ`. /// /// The blanket implementation correspondsn to the 2-norm-squared data fidelity /// $\\|\text{residual}\\|\_2^2/2$. fn calculate_fit( &self, _μ : &DiscreteMeasure<Loc<F, N>, F>, residual : &Observable ) -> F { residual.norm2_squared_div2() } /// Calculates the data term value at $μ$. /// /// Unlike [`Self::calculate_fit`], no inertia, etc., should be applied to `μ`. fn calculate_fit_simple( &self, μ : &DiscreteMeasure<Loc<F, N>, F>, ) -> F; /// Returns the final iterate after any necessary postprocess pruning, merging, etc. fn postprocess(self, mut μ : DiscreteMeasure<Loc<F, N>, F>, merging : SpikeMergingMethod<F>) -> DiscreteMeasure<Loc<F, N>, F> where DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F> { μ.merge_spikes_fitness(merging, |μ̃| self.calculate_fit_simple(μ̃), |&v| v); μ.prune(); μ } /// Returns measure to be used for value calculations, which may differ from μ. fn value_μ<'c, 'b : 'c>(&'b self, μ : &'c DiscreteMeasure<Loc<F, N>, F>) -> &'c DiscreteMeasure<Loc<F, N>, F> { μ } } /// Specialisation of [`generic_pointsource_fb`] to basic μFB. struct BasicFB< 'a, F : Float + ToNalgebraRealField, A : ForwardModel<Loc<F, N>, F>, const N : usize > { /// The data b : &'a A::Observable, /// The forward operator opA : &'a A, } /// Implementation of [`FBSpecialisation`] for basic μFB forward-backward splitting. #[replace_float_literals(F::cast_from(literal))] impl<'a, F : Float + ToNalgebraRealField , A : ForwardModel<Loc<F, N>, F>, const N : usize> FBSpecialisation<F, A::Observable, N> for BasicFB<'a, F, A, N> { fn update( &mut self, μ : &mut DiscreteMeasure<Loc<F, N>, F>, _μ_base : &DiscreteMeasure<Loc<F, N>, F> ) -> (A::Observable, Option<F>) { μ.prune(); //*residual = self.opA.apply(μ) - self.b; let mut residual = self.b.clone(); self.opA.gemv(&mut residual, 1.0, μ, -1.0); (residual, None) } fn calculate_fit_simple( &self, μ : &DiscreteMeasure<Loc<F, N>, F>, ) -> F { let mut residual = self.b.clone(); self.opA.gemv(&mut residual, 1.0, μ, -1.0); residual.norm2_squared_div2() } } /// Specialisation of [`generic_pointsource_fb`] to FISTA. struct FISTA< 'a, F : Float + ToNalgebraRealField, A : ForwardModel<Loc<F, N>, F>, const N : usize > { /// The data b : &'a A::Observable, /// The forward operator opA : &'a A, /// Current inertial parameter λ : F, /// Previous iterate without inertia applied. /// We need to store this here because `μ_base` passed to [`FBSpecialisation::update`] will /// have inertia applied to it, so is not useful to use. μ_prev : DiscreteMeasure<Loc<F, N>, F>, } /// Implementation of [`FBSpecialisation`] for μFISTA inertial forward-backward splitting. #[replace_float_literals(F::cast_from(literal))] impl<'a, F : Float + ToNalgebraRealField, A : ForwardModel<Loc<F, N>, F>, const N : usize> FBSpecialisation<F, A::Observable, N> for FISTA<'a, F, A, N> { fn update( &mut self, μ : &mut DiscreteMeasure<Loc<F, N>, F>, _μ_base : &DiscreteMeasure<Loc<F, N>, F> ) -> (A::Observable, Option<F>) { // Update inertial parameters let λ_prev = self.λ; self.λ = 2.0 * λ_prev / ( λ_prev + (4.0 + λ_prev * λ_prev).sqrt() ); let θ = self.λ / λ_prev - self.λ; // Perform inertial update on μ. // This computes μ ← (1 + θ) * μ - θ * μ_prev, pruning spikes where both μ // and μ_prev have zero weight. Since both have weights from the finite-dimensional // subproblem with a proximal projection step, this is likely to happen when the // spike is not needed. A copy of the pruned μ without artithmetic performed is // stored in μ_prev. μ.pruning_sub(1.0 + θ, θ, &mut self.μ_prev); //*residual = self.opA.apply(μ) - self.b; let mut residual = self.b.clone(); self.opA.gemv(&mut residual, 1.0, μ, -1.0); (residual, None) } fn calculate_fit_simple( &self, μ : &DiscreteMeasure<Loc<F, N>, F>, ) -> F { let mut residual = self.b.clone(); self.opA.gemv(&mut residual, 1.0, μ, -1.0); residual.norm2_squared_div2() } fn calculate_fit( &self, _μ : &DiscreteMeasure<Loc<F, N>, F>, _residual : &A::Observable ) -> F { self.calculate_fit_simple(&self.μ_prev) } // For FISTA we need to do a final pruning as well, due to the limited // pruning that can be done on each step. fn postprocess(mut self, μ_base : DiscreteMeasure<Loc<F, N>, F>, merging : SpikeMergingMethod<F>) -> DiscreteMeasure<Loc<F, N>, F> where DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F> { let mut μ = self.μ_prev; self.μ_prev = μ_base; μ.merge_spikes_fitness(merging, |μ̃| self.calculate_fit_simple(μ̃), |&v| v); μ.prune(); μ } fn value_μ<'c, 'b : 'c>(&'c self, _μ : &'c DiscreteMeasure<Loc<F, N>, F>) -> &'c DiscreteMeasure<Loc<F, N>, F> { &self.μ_prev } } /// Iteratively solve the pointsource localisation problem using forward-backward splitting /// /// The settings in `config` have their [respective documentation](FBConfig). `opA` is the /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control /// as documented in [`alg_tools::iterate`]. /// /// For details on the mathematical formulation, see the [module level](self) documentation. /// /// Returns the final iterate. #[replace_float_literals(F::cast_from(literal))] pub fn pointsource_fb<'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, const N : usize>( opA : &'a A, b : &A::Observable, α : F, op𝒟 : &'a 𝒟, config : &FBConfig<F>, iterator : I, plotter : SeqPlotter<F, N> ) -> DiscreteMeasure<Loc<F, N>, F> where F : Float + ToNalgebraRealField, I : AlgIteratorFactory<IterInfo<F, N>>, for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable>, //+ std::ops::Mul<F, Output=A::Observable>, <-- FIXME: compiler overflow A::Observable : std::ops::MulAssign<F>, GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> + Lipschitz<𝒟, FloatType=F>, BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, 𝒟::Codomain : RealMapping<F, N>, S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, Cube<F, N>: P2Minimise<Loc<F, N>, F>, PlotLookup : Plotting<N>, DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F> { let initial_residual = -b; let τ = config.τ0/opA.lipschitz_factor(&op𝒟).unwrap(); match config.meta { FBMetaAlgorithm::None => generic_pointsource_fb( opA, α, op𝒟, τ, &config.insertion, iterator, plotter, initial_residual, BasicFB{ b, opA } ), FBMetaAlgorithm::InertiaFISTA => generic_pointsource_fb( opA, α, op𝒟, τ, &config.insertion, iterator, plotter, initial_residual, FISTA{ b, opA, λ : 1.0, μ_prev : DiscreteMeasure::new() } ), } } /// Generic implementation of [`pointsource_fb`]. /// /// The method can be specialised to even primal-dual proximal splitting through the /// [`FBSpecialisation`] parameter `specialisation`. /// The settings in `config` have their [respective documentation](FBGenericConfig). `opA` is the /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control /// as documented in [`alg_tools::iterate`]. /// /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of /// sums of simple functions usign bisection trees, and the related /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions /// active at a specific points, and to maximise their sums. Through the implementation of the /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. /// /// Returns the final iterate. #[replace_float_literals(F::cast_from(literal))] pub fn generic_pointsource_fb<'a, F, I, A, GA, 𝒟, BTA, G𝒟, S, K, Spec, const N : usize>( opA : &'a A, α : F, op𝒟 : &'a 𝒟, mut τ : F, config : &FBGenericConfig<F>, iterator : I, mut plotter : SeqPlotter<F, N>, mut residual : A::Observable, mut specialisation : Spec, ) -> DiscreteMeasure<Loc<F, N>, F> where F : Float + ToNalgebraRealField, I : AlgIteratorFactory<IterInfo<F, N>>, Spec : FBSpecialisation<F, A::Observable, N>, A::Observable : std::ops::MulAssign<F>, GA : SupportGenerator<F, N, SupportType = S, Id = usize> + Clone, A : ForwardModel<Loc<F, N>, F, PreadjointCodomain = BTFN<F, GA, BTA, N>> + Lipschitz<𝒟, FloatType=F>, BTA : BTSearch<F, N, Data=usize, Agg=Bounds<F>>, G𝒟 : SupportGenerator<F, N, SupportType = K, Id = usize> + Clone, 𝒟 : DiscreteMeasureOp<Loc<F, N>, F, PreCodomain = PreBTFN<F, G𝒟, N>>, 𝒟::Codomain : RealMapping<F, N>, S: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, K: RealMapping<F, N> + LocalAnalysis<F, Bounds<F>, N>, BTNodeLookup: BTNode<F, usize, Bounds<F>, N>, Cube<F, N>: P2Minimise<Loc<F, N>, F>, PlotLookup : Plotting<N>, DiscreteMeasure<Loc<F, N>, F> : SpikeMerging<F> { // Set up parameters let quiet = iterator.is_quiet(); let op𝒟norm = op𝒟.opnorm_bound(); // We multiply tolerance by τ for FB since // our subproblems depending on tolerances are scaled by τ compared to the conditional // gradient approach. let tolerance = config.tolerance * τ * α; let mut ε = tolerance.initial(); // Initialise operators let preadjA = opA.preadjoint(); // Initialise iterates let mut μ = DiscreteMeasure::new(); let mut inner_iters = 0; let mut this_iters = 0; let mut pruned = 0; let mut merged = 0; let μ_diff = |μ_new : &DiscreteMeasure<Loc<F, N>, F>, μ_base : &DiscreteMeasure<Loc<F, N>, F>| { let mut ν : DiscreteMeasure<Loc<F, N>, F> = match config.insertion_style { InsertionStyle::Reuse => { μ_new.iter_spikes() .zip(μ_base.iter_masses().chain(std::iter::repeat(0.0))) .map(|(δ, α_base)| (δ.x, α_base - δ.α)) .collect() }, InsertionStyle::Zero => { μ_new.iter_spikes() .map(|δ| -δ) .chain(μ_base.iter_spikes().copied()) .collect() } }; ν.prune(); // Potential small performance improvement ν }; // Run the algorithm iterator.iterate(|state| { // Calculate subproblem tolerances, and update main tolerance for next iteration let τα = τ * α; let target_bounds = Bounds(τα - ε, τα + ε); let merge_tolerance = config.merge_tolerance_mult * ε; let merge_target_bounds = Bounds(τα - merge_tolerance, τα + merge_tolerance); let inner_tolerance = ε * config.inner.tolerance_mult; let refinement_tolerance = ε * config.refinement.tolerance_mult; let maximise_above = τα + ε * config.insertion_cutoff_factor; let ε_prev = ε; ε = tolerance.update(ε, state.iteration()); // Maximum insertion count and measure difference calculation depend on insertion style. let (m, warn_insertions) = match (state.iteration(), config.bootstrap_insertions) { (i, Some((l, k))) if i <= l => (k, false), _ => (config.max_insertions, !quiet), }; let max_insertions = match config.insertion_style { InsertionStyle::Zero => { todo!("InsertionStyle::Zero does not currently work with FISTA, so diabled."); // let n = μ.len(); // μ = DiscreteMeasure::new(); // n + m }, InsertionStyle::Reuse => m, }; // Calculate smooth part of surrogate model. // Using `std::mem::replace` here is not ideal, and expects that `empty_observable` // has no significant overhead. For some reosn Rust doesn't allow us simply moving // the residual and replacing it below before the end of this closure. residual *= -τ; let r = std::mem::replace(&mut residual, opA.empty_observable()); let minus_τv = preadjA.apply(r); // minus_τv = -τA^*(Aμ^k-b) // TODO: should avoid a second copy of μ here; μ_base already stores a copy. let ω0 = op𝒟.apply(μ.clone()); // 𝒟μ^k //let g = &minus_τv + ω0; // Linear term of surrogate model // Save current base point let μ_base = μ.clone(); // Add points to support until within error tolerance or maximum insertion count reached. let mut count = 0; let (within_tolerances, d) = 'insertion: loop { if μ.len() > 0 { // Form finite-dimensional subproblem. The subproblem references to the original μ^k // from the beginning of the iteration are all contained in the immutable c and g. let à = op𝒟.findim_matrix(μ.iter_locations()); let g̃ = DVector::from_iterator(μ.len(), μ.iter_locations() .map(|ζ| minus_τv.apply(ζ) + ω0.apply(ζ)) .map(F::to_nalgebra_mixed)); let mut x = μ.masses_dvector(); // The gradient of the forward component of the inner objective is C^*𝒟Cx - g̃. // We have |C^*𝒟Cx|_2 = sup_{|z|_2 ≤ 1} ⟨z, C^*𝒟Cx⟩ = sup_{|z|_2 ≤ 1} ⟨Cz|𝒟Cx⟩ // ≤ sup_{|z|_2 ≤ 1} |Cz|_ℳ |𝒟Cx|_∞ ≤ sup_{|z|_2 ≤ 1} |Cz|_ℳ |𝒟| |Cx|_ℳ // ≤ sup_{|z|_2 ≤ 1} |z|_1 |𝒟| |x|_1 ≤ sup_{|z|_2 ≤ 1} n |z|_2 |𝒟| |x|_2 // = n |𝒟| |x|_2, where n is the number of points. Therefore let inner_τ = config.inner.τ0 / (op𝒟norm * F::cast_from(μ.len())); // Solve finite-dimensional subproblem. let inner_it = config.inner.iterator_options.stop_target(inner_tolerance); inner_iters += quadratic_nonneg(config.inner.method, &Ã, &g̃, τ*α, &mut x, inner_τ, inner_it); // Update masses of μ based on solution of finite-dimensional subproblem. μ.set_masses_dvector(&x); } // Form d = ω0 - τv - 𝒟μ = -𝒟(μ - μ^k) - τv for checking the proximate optimality // conditions in the predual space, and finding new points for insertion, if necessary. let mut d = &minus_τv + op𝒟.preapply(μ_diff(&μ, &μ_base)); // If no merging heuristic is used, let's be more conservative about spike insertion, // and skip it after first round. If merging is done, being more greedy about spike // insertion also seems to improve performance. let may_break = if let SpikeMergingMethod::None = config.merging { false } else { count > 0 }; // If preliminary check indicates that we are in bonds, and if it otherwise matches // the insertion strategy, skip insertion. if may_break && target_bounds.superset(&d.bounds()) { break 'insertion (true, d) } // If the rough check didn't indicate stopping, find maximising point, maintaining for // the calculations in the beginning of the loop that v_ξ = (ω0-τv-𝒟μ)(ξ) = d(ξ), // where 𝒟μ is now distinct from μ0 after the insertions already performed. // We do not need to check lower bounds, as a solution of the finite-dimensional // subproblem should always satisfy them. // If μ has some spikes, only find a maximum of d if it is above a threshold // defined by the refinment tolerance. let (ξ, v_ξ) = match d.maximise_above(maximise_above, refinement_tolerance, config.refinement.max_steps) { None => break 'insertion (true, d), Some(res) => res, }; // Break if maximum insertion count reached if count >= max_insertions { let in_bounds2 = target_bounds.upper() >= v_ξ; break 'insertion (in_bounds2, d) } // No point in optimising the weight here; the finite-dimensional algorithm is fast. μ += DeltaMeasure { x : ξ, α : 0.0 }; count += 1; }; if !within_tolerances && warn_insertions { // Complain (but continue) if we failed to get within tolerances // by inserting more points. let err = format!("Maximum insertions reached without achieving \ subproblem solution tolerance"); println!("{}", err.red()); } // Merge spikes if state.iteration() % config.merge_every == 0 { let n_before_merge = μ.len(); μ.merge_spikes(config.merging, |μ_candidate| { let mut d = &minus_τv + op𝒟.preapply(μ_diff(&μ_candidate, &μ_base)); if merge_target_bounds.superset(&d.bounds()) { return Some(()) } let d_min_supp = μ_candidate.iter_spikes().filter_map(|&DeltaMeasure{ α, ref x }| { (α != 0.0).then(|| d.apply(x)) }).reduce(F::min); if d_min_supp.map_or(true, |b| b >= merge_target_bounds.lower()) && d.has_upper_bound(merge_target_bounds.upper(), refinement_tolerance, config.refinement.max_steps) { Some(()) } else { None } }); debug_assert!(μ.len() >= n_before_merge); merged += μ.len() - n_before_merge; } let n_before_prune = μ.len(); (residual, τ) = match specialisation.update(&mut μ, &μ_base) { (r, None) => (r, τ), (r, Some(new_τ)) => (r, new_τ) }; debug_assert!(μ.len() <= n_before_prune); pruned += n_before_prune - μ.len(); this_iters += 1; // Give function value if needed state.if_verbose(|| { let value_μ = specialisation.value_μ(&μ); // Plot if so requested plotter.plot_spikes( format!("iter {} end; {}", state.iteration(), within_tolerances), &d, "start".to_string(), Some(&minus_τv), Some(target_bounds), value_μ, ); // Calculate mean inner iterations and reset relevant counters. // Return the statistics let res = IterInfo { value : specialisation.calculate_fit(&μ, &residual) + α * value_μ.norm(Radon), n_spikes : value_μ.len(), inner_iters, this_iters, merged, pruned, ε : ε_prev, postprocessing: config.postprocessing.then(|| value_μ.clone()), }; inner_iters = 0; this_iters = 0; merged = 0; pruned = 0; res }) }); specialisation.postprocess(μ, config.final_merging) }