Fri, 14 Feb 2025 23:46:43 -0500
Some documentation and factor changes related to ℓ_F and ℓ_r.
Also allow Zed to re-indent the modified files.
/*! Simple parametric forward model. */ use super::{AdjointProductBoundedBy, AdjointProductPairBoundedBy, BoundedCurvature, ForwardModel}; use crate::measures::RNDM; use alg_tools::direct_product::Pair; use alg_tools::error::DynError; use alg_tools::linops::{IdOp, Linear, RowOp, ZeroOp, AXPY}; use alg_tools::mapping::Space; use alg_tools::norms::{Norm, NormExponent, PairNorm, L2}; use alg_tools::types::{ClosedAdd, Float}; use numeric_literals::replace_float_literals; impl<Domain, F, A, E> ForwardModel<Pair<Domain, A::Observable>, F, PairNorm<E, L2, L2>> for RowOp<A, IdOp<A::Observable>> where E: NormExponent, Domain: Space + Norm<F, E>, F: Float, A::Observable: ClosedAdd + Norm<F, L2> + 'static, A: ForwardModel<Domain, F, E> + 'static, { type Observable = A::Observable; fn write_observable(&self, b: &Self::Observable, prefix: String) -> DynError { self.0.write_observable(b, prefix) } /// Returns a zero observable fn zero_observable(&self) -> Self::Observable { self.0.zero_observable() } } #[replace_float_literals(F::cast_from(literal))] impl<Domain, F, A, D, Z> AdjointProductPairBoundedBy<Pair<Domain, Z>, D, IdOp<Z>> for RowOp<A, IdOp<Z>> where Domain: Space, F: Float, Z: Clone + Space + ClosedAdd, A: AdjointProductBoundedBy<Domain, D, FloatType = F, Codomain = Z>, A::Codomain: ClosedAdd, { type FloatType = F; fn adjoint_product_pair_bound(&self, d: &D, _: &IdOp<Z>) -> Option<(F, F)> { self.0.adjoint_product_bound(d).map(|l_0| { // [A_*; B_*][A, B] = [A_*A, A_* B; B_* A, B_* B] ≤ diag(2A_*A, 2B_*B) // ≤ diag(2l_A𝒟_A, 2l_B𝒟_B), where now 𝒟_B=Id and l_B=1. (2.0 * l_0, 2.0) }) } } /* /// This `impl` is bit of an abuse as the codomain of `Apre` is a [`Pair`] of a measure predual, /// to which this `impl` applies, and another space. impl<F, Apre, Z> LipschitzValues for ColOp<Apre, IdOp<Z>> where F : Float, Z : Clone + Space + ClosedAdd, Apre : LipschitzValues<FloatType = F>, { type FloatType = F; /// Return (if one exists) a factor $L$ such that $A_*z$ is $L$-Lipschitz for all /// $z$ in the unit ball. fn value_unit_lipschitz_factor(&self) -> Option<Self::FloatType> { self.0.value_unit_lipschitz_factor() } /// Return (if one exists) a factor $L$ such that $∇A_*z$ is $L$-Lipschitz for all /// $z$ in the unit ball. fn value_diff_unit_lipschitz_factor(&self) -> Option<Self::FloatType> { self.0.value_diff_unit_lipschitz_factor() } } */ impl<F, A, Z> BoundedCurvature for RowOp<A, IdOp<Z>> where F: Float, Z: Clone + Space + ClosedAdd, A: BoundedCurvature<FloatType = F>, { type FloatType = F; fn curvature_bound_components(&self) -> (Option<Self::FloatType>, Option<Self::FloatType>) { self.0.curvature_bound_components() } } #[replace_float_literals(F::cast_from(literal))] impl<'a, F, D, XD, Y, const N: usize> AdjointProductBoundedBy<RNDM<F, N>, D> for ZeroOp<'a, RNDM<F, N>, XD, Y, F> where F: Float, Y: AXPY<F> + Clone, D: Linear<RNDM<F, N>>, { type FloatType = F; /// Return $L$ such that $A_*A ≤ L𝒟$ is bounded by some `other` operator $𝒟$. fn adjoint_product_bound(&self, _: &D) -> Option<F> { Some(0.0) } }