Sat, 01 Feb 2025 16:47:11 -0500
Parameter adjustments
/*! Solver for the point source localisation problem with primal-dual proximal splitting. This corresponds to the manuscript * Valkonen T. - _Proximal methods for point source localisation_, [arXiv:2212.02991](https://arxiv.org/abs/2212.02991). The main routine is [`pointsource_pdps_reg`]. Both norm-2-squared and norm-1 data terms are supported. That is, implemented are solvers for <div> $$ \min_{μ ∈ ℳ(Ω)}~ F_0(Aμ - b) + α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(μ), $$ for both $F_0(y)=\frac{1}{2}\|y\|_2^2$ and $F_0(y)=\|y\|_1$ with the forward operator $A \in 𝕃(ℳ(Ω); ℝ^n)$. </div> ## Approach <p> The problem above can be written as $$ \min_μ \max_y G(μ) + ⟨y, Aμ-b⟩ - F_0^*(μ), $$ where $G(μ) = α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(μ)$. The Fenchel–Rockafellar optimality conditions, employing the predual in $ℳ(Ω)$, are $$ 0 ∈ A_*y + ∂G(μ) \quad\text{and}\quad Aμ - b ∈ ∂ F_0^*(y). $$ The solution of the first part is as for forward-backward, treated in the manuscript. This is the task of <code>generic_pointsource_fb</code>, where we use <code>FBSpecialisation</code> to replace the specific residual $Aμ-b$ by $y$. For $F_0(y)=\frac{1}{2}\|y\|_2^2$ the second part reads $y = Aμ -b$. For $F_0(y)=\|y\|_1$ the second part reads $y ∈ ∂\|·\|_1(Aμ - b)$. </p> */ use numeric_literals::replace_float_literals; use serde::{Serialize, Deserialize}; use nalgebra::DVector; use clap::ValueEnum; use alg_tools::iterate::AlgIteratorFactory; use alg_tools::euclidean::Euclidean; use alg_tools::linops::Mapping; use alg_tools::norms::{ Linfinity, Projection, }; use alg_tools::mapping::{RealMapping, Instance}; use alg_tools::nalgebra_support::ToNalgebraRealField; use alg_tools::linops::AXPY; use crate::types::*; use crate::measures::{DiscreteMeasure, RNDM}; use crate::measures::merging::SpikeMerging; use crate::forward_model::{ ForwardModel, AdjointProductBoundedBy, }; use crate::plot::{ SeqPlotter, Plotting, PlotLookup }; use crate::fb::{ postprocess, prune_with_stats }; pub use crate::prox_penalty::{ FBGenericConfig, ProxPenalty }; use crate::regularisation::RegTerm; use crate::dataterm::{ DataTerm, L2Squared, L1 }; use crate::measures::merging::SpikeMergingMethod; /// Acceleration #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, ValueEnum, Debug)] pub enum Acceleration { /// No acceleration #[clap(name = "none")] None, /// Partial acceleration, $ω = 1/\sqrt{1+σ}$ #[clap(name = "partial", help = "Partial acceleration, ω = 1/√(1+σ)")] Partial, /// Full acceleration, $ω = 1/\sqrt{1+2σ}$; no gap convergence guaranteed #[clap(name = "full", help = "Full acceleration, ω = 1/√(1+2σ); no gap convergence guaranteed")] Full } #[replace_float_literals(F::cast_from(literal))] impl Acceleration { /// PDPS parameter acceleration. Updates τ and σ and returns ω. /// This uses dual strong convexity, not primal. fn accelerate<F : Float>(self, τ : &mut F, σ : &mut F, γ : F) -> F { match self { Acceleration::None => 1.0, Acceleration::Partial => { let ω = 1.0 / (1.0 + γ * (*σ)).sqrt(); *σ *= ω; *τ /= ω; ω }, Acceleration::Full => { let ω = 1.0 / (1.0 + 2.0 * γ * (*σ)).sqrt(); *σ *= ω; *τ /= ω; ω }, } } } /// Settings for [`pointsource_pdps_reg`]. #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] #[serde(default)] pub struct PDPSConfig<F : Float> { /// Primal step length scaling. We must have `τ0 * σ0 < 1`. pub τ0 : F, /// Dual step length scaling. We must have `τ0 * σ0 < 1`. pub σ0 : F, /// Accelerate if available pub acceleration : Acceleration, /// Generic parameters pub generic : FBGenericConfig<F>, } #[replace_float_literals(F::cast_from(literal))] impl<F : Float> Default for PDPSConfig<F> { fn default() -> Self { let τ0 = 5.0; PDPSConfig { τ0, σ0 : 0.99/τ0, acceleration : Acceleration::Partial, generic : FBGenericConfig { merging : SpikeMergingMethod { enabled : true, ..Default::default() }, .. Default::default() }, } } } /// Trait for data terms for the PDPS #[replace_float_literals(F::cast_from(literal))] pub trait PDPSDataTerm<F : Float, V, const N : usize> : DataTerm<F, V, N> { /// Calculate some subdifferential at `x` for the conjugate fn some_subdifferential(&self, x : V) -> V; /// Factor of strong convexity of the conjugate #[inline] fn factor_of_strong_convexity(&self) -> F { 0.0 } /// Perform dual update fn dual_update(&self, _y : &mut V, _y_prev : &V, _σ : F); } #[replace_float_literals(F::cast_from(literal))] impl<F, V, const N : usize> PDPSDataTerm<F, V, N> for L2Squared where F : Float, V : Euclidean<F> + AXPY<F>, for<'b> &'b V : Instance<V>, { fn some_subdifferential(&self, x : V) -> V { x } fn factor_of_strong_convexity(&self) -> F { 1.0 } #[inline] fn dual_update(&self, y : &mut V, y_prev : &V, σ : F) { y.axpy(1.0 / (1.0 + σ), y_prev, σ / (1.0 + σ)); } } #[replace_float_literals(F::cast_from(literal))] impl<F : Float + nalgebra::RealField, const N : usize> PDPSDataTerm<F, DVector<F>, N> for L1 { fn some_subdifferential(&self, mut x : DVector<F>) -> DVector<F> { // nalgebra sucks for providing second copies of the same stuff that's elsewhere as well. x.iter_mut() .for_each(|v| if *v != F::ZERO { *v = *v/<F as NumTraitsFloat>::abs(*v) }); x } #[inline] fn dual_update(&self, y : &mut DVector<F>, y_prev : &DVector<F>, σ : F) { y.axpy(1.0, y_prev, σ); y.proj_ball_mut(1.0, Linfinity); } } /// Iteratively solve the pointsource localisation problem using primal-dual proximal splitting. /// /// The `dataterm` should be either [`L1`] for norm-1 data term or [`L2Squared`] for norm-2-squared. /// The settings in `config` have their [respective documentation](PDPSConfig). `opA` is the /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control /// as documented in [`alg_tools::iterate`]. /// /// For the mathematical formulation, see the [module level](self) documentation and the manuscript. /// /// Returns the final iterate. #[replace_float_literals(F::cast_from(literal))] pub fn pointsource_pdps_reg<F, I, A, D, Reg, P, const N : usize>( opA : &A, b : &A::Observable, reg : Reg, prox_penalty : &P, pdpsconfig : &PDPSConfig<F>, iterator : I, mut plotter : SeqPlotter<F, N>, dataterm : D, ) -> RNDM<F, N> where F : Float + ToNalgebraRealField, I : AlgIteratorFactory<IterInfo<F, N>>, A : ForwardModel<RNDM<F, N>, F> + AdjointProductBoundedBy<RNDM<F, N>, P, FloatType=F>, A::PreadjointCodomain : RealMapping<F, N>, for<'b> &'b A::Observable : std::ops::Neg<Output=A::Observable> + Instance<A::Observable>, PlotLookup : Plotting<N>, RNDM<F, N> : SpikeMerging<F>, D : PDPSDataTerm<F, A::Observable, N>, Reg : RegTerm<F, N>, P : ProxPenalty<F, A::PreadjointCodomain, Reg, N>, { // Check parameters assert!(pdpsconfig.τ0 > 0.0 && pdpsconfig.σ0 > 0.0 && pdpsconfig.τ0 * pdpsconfig.σ0 <= 1.0, "Invalid step length parameters"); // Set up parameters let config = &pdpsconfig.generic; let l = opA.adjoint_product_bound(prox_penalty).unwrap().sqrt(); let mut τ = pdpsconfig.τ0 / l; let mut σ = pdpsconfig.σ0 / l; let γ = dataterm.factor_of_strong_convexity(); // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled // by τ compared to the conditional gradient approach. let tolerance = config.tolerance * τ * reg.tolerance_scaling(); let mut ε = tolerance.initial(); // Initialise iterates let mut μ = DiscreteMeasure::new(); let mut y = dataterm.some_subdifferential(-b); let mut y_prev = y.clone(); let full_stats = |μ : &RNDM<F, N>, ε, stats| IterInfo { value : dataterm.calculate_fit_op(μ, opA, b) + reg.apply(μ), n_spikes : μ.len(), ε, // postprocessing: config.postprocessing.then(|| μ.clone()), .. stats }; let mut stats = IterInfo::new(); // Run the algorithm for state in iterator.iter_init(|| full_stats(&μ, ε, stats.clone())) { // Calculate smooth part of surrogate model. let mut τv = opA.preadjoint().apply(y * τ); // Save current base point let μ_base = μ.clone(); // Insert and reweigh let (maybe_d, _within_tolerances) = prox_penalty.insert_and_reweigh( &mut μ, &mut τv, &μ_base, None, τ, ε, config, ®, &state, &mut stats ); // Prune and possibly merge spikes if config.merge_now(&state) { stats.merged += prox_penalty.merge_spikes_no_fitness( &mut μ, &mut τv, &μ_base, None, τ, ε, config, ®, ); } stats.pruned += prune_with_stats(&mut μ); // Update step length parameters let ω = pdpsconfig.acceleration.accelerate(&mut τ, &mut σ, γ); // Do dual update y = b.clone(); // y = b opA.gemv(&mut y, 1.0 + ω, &μ, -1.0); // y = A[(1+ω)μ^{k+1}]-b opA.gemv(&mut y, -ω, &μ_base, 1.0); // y = A[(1+ω)μ^{k+1} - ω μ^k]-b dataterm.dual_update(&mut y, &y_prev, σ); y_prev.copy_from(&y); // Give statistics if requested let iter = state.iteration(); stats.this_iters += 1; state.if_verbose(|| { plotter.plot_spikes(iter, maybe_d.as_ref(), Some(&τv), &μ); full_stats(&μ, ε, std::mem::replace(&mut stats, IterInfo::new())) }); ε = tolerance.update(ε, iter); } postprocess(μ, config, dataterm, opA, b) }