Sat, 01 Feb 2025 16:47:11 -0500
Parameter adjustments
//! Implementation of the linear function use numeric_literals::replace_float_literals; use serde::Serialize; use alg_tools::types::*; use alg_tools::norms::*; use alg_tools::loc::Loc; use alg_tools::sets::Cube; use alg_tools::bisection_tree::{ Support, Bounds, LocalAnalysis, GlobalAnalysis, Bounded, }; use alg_tools::mapping::{Mapping, Instance}; use alg_tools::maputil::array_init; use alg_tools::euclidean::Euclidean; /// Representation of the hat function $f(x)=1-\\|x\\|\_1/ε$ of `width` $ε$ on $ℝ^N$. #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] pub struct Linear<F : Float, const N : usize> { /// The parameter $ε>0$. pub v : Loc<F, N>, } #[replace_float_literals(F::cast_from(literal))] impl<F : Float, const N : usize> Mapping<Loc<F, N>> for Linear<F, N> { type Codomain = F; #[inline] fn apply<I : Instance<Loc<F, N>>>(&self, x : I) -> Self::Codomain { x.eval(|x| self.v.dot(x)) } } #[replace_float_literals(F::cast_from(literal))] impl<'a, F : Float, const N : usize> Support<F, N> for Linear<F, N> { #[inline] fn support_hint(&self) -> Cube<F,N> { array_init(|| [F::NEG_INFINITY, F::INFINITY]).into() } #[inline] fn in_support(&self, _x : &Loc<F,N>) -> bool { true } /*fn fully_in_support(&self, _cube : &Cube<F,N>) -> bool { todo!("Not implemented, but not used at the moment") }*/ #[inline] fn bisection_hint(&self, _cube : &Cube<F,N>) -> [Option<F>; N] { [None; N] } } #[replace_float_literals(F::cast_from(literal))] impl<'a, F : Float, const N : usize> GlobalAnalysis<F, Bounds<F>> for Linear<F, N> { #[inline] fn global_analysis(&self) -> Bounds<F> { Bounds(F::NEG_INFINITY, F::INFINITY) } } impl<'a, F : Float, const N : usize> LocalAnalysis<F, Bounds<F>, N> for Linear<F, N> { #[inline] fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { let (lower, upper) = cube.iter_corners() .map(|x| self.apply(x)) .fold((F::INFINITY, F::NEG_INFINITY), |(lower, upper), v| { (lower.min(v), upper.max(v)) }); Bounds(lower, upper) } } #[replace_float_literals(F::cast_from(literal))] impl<'a, F : Float, const N : usize> Norm<F, Linfinity> for Linear<F, N> { #[inline] fn norm(&self, _ : Linfinity) -> F { self.bounds().upper() } }