Mon, 05 Dec 2022 23:50:22 +0200
Zenodo packaging hacks
/*! This module implements the convolution operators $𝒟$. The principal data type of the module is [`ConvolutionOp`] and the main abstraction the trait [`DiscreteMeasureOp`]. */ use crate::measures::{DeltaMeasure, DiscreteMeasure, Radon, SpikeIter, RNDM}; use alg_tools::bisection_tree::*; use alg_tools::instance::Instance; use alg_tools::iter::{FilterMapX, Mappable}; use alg_tools::linops::{BoundedLinear, Linear, Mapping}; use alg_tools::loc::Loc; use alg_tools::mapping::RealMapping; use alg_tools::nalgebra_support::ToNalgebraRealField; use alg_tools::norms::Linfinity; use alg_tools::sets::Cube; use alg_tools::types::*; use itertools::Itertools; use nalgebra::DMatrix; use std::iter::Zip; use std::marker::PhantomData; use std::ops::RangeFrom; /// Abstraction for operators $𝒟 ∈ 𝕃(𝒵(Ω); C_c(Ω))$. /// /// Here $𝒵(Ω) ⊂ ℳ(Ω)$ is the space of sums of delta measures, presented by [`DiscreteMeasure`]. pub trait DiscreteMeasureOp<Domain, F>: BoundedLinear<DiscreteMeasure<Domain, F>, Radon, Linfinity, F> where F: Float + ToNalgebraRealField, Domain: 'static + Clone + PartialEq, { /// The output type of [`Self::preapply`]. type PreCodomain; /// Creates a finite-dimensional presentatin of the operator restricted to a fixed support. /// /// <p> /// This returns the matrix $C_*𝒟C$, where $C ∈ 𝕃(ℝ^n; 𝒵(Ω))$, $Ca = ∑_{i=1}^n α_i δ_{x_i}$ /// for a $x_1, …, x_n$ the coordinates given by the iterator `I`, and $a=(α_1,…,α_n)$. /// Here $C_* ∈ 𝕃(C_c(Ω); ℝ^n) $ stands for the preadjoint. /// </p> fn findim_matrix<'a, I>(&self, points: I) -> DMatrix<F::MixedType> where I: ExactSizeIterator<Item = &'a Domain> + Clone; /// [`Mapping`] that typically returns an uninitialised [`PreBTFN`] /// instead of a full [`BTFN`]. fn preapply(&self, μ: DiscreteMeasure<Domain, F>) -> Self::PreCodomain; } // Blanket implementation of a measure as a linear functional over a predual // (that by assumption is a linear functional over a measure). /*impl<F, Domain, Predual> Linear<Predual> for DiscreteMeasure<Domain, F> where F : Float + ToNalgebraRealField, Predual : Linear<DiscreteMeasure<Domain, F>, Codomain=F> { type Codomain = F; #[inline] fn apply(&self, ω : &Predual) -> F { ω.apply(self) } }*/ // // Convolutions for discrete measures // /// A trait alias for simple convolution kernels. pub trait SimpleConvolutionKernel<F: Float, const N: usize>: RealMapping<F, N> + Support<F, N> + Bounded<F> + Clone + 'static { } impl<T, F: Float, const N: usize> SimpleConvolutionKernel<F, N> for T where T: RealMapping<F, N> + Support<F, N> + Bounded<F> + Clone + 'static { } /// [`SupportGenerator`] for [`ConvolutionOp`]. #[derive(Clone, Debug)] pub struct ConvolutionSupportGenerator<F: Float, K, const N: usize> where K: SimpleConvolutionKernel<F, N>, { kernel: K, centres: RNDM<F, N>, } impl<F: Float, K, const N: usize> ConvolutionSupportGenerator<F, K, N> where K: SimpleConvolutionKernel<F, N>, { /// Construct the convolution kernel corresponding to `δ`, i.e., one centered at `δ.x` and /// weighted by `δ.α`. #[inline] fn construct_kernel<'a>( &'a self, δ: &'a DeltaMeasure<Loc<F, N>, F>, ) -> Weighted<Shift<K, F, N>, F> { self.kernel.clone().shift(δ.x).weigh(δ.α) } /// This is a helper method for the implementation of [`ConvolutionSupportGenerator::all_data`]. /// It filters out `δ` with zero weight, and otherwise returns the corresponding convolution /// kernel. The `id` is passed through as-is. #[inline] fn construct_kernel_and_id_filtered<'a>( &'a self, (id, δ): (usize, &'a DeltaMeasure<Loc<F, N>, F>), ) -> Option<(usize, Weighted<Shift<K, F, N>, F>)> { (δ.α != F::ZERO).then(|| (id.into(), self.construct_kernel(δ))) } } impl<F: Float, K, const N: usize> SupportGenerator<F, N> for ConvolutionSupportGenerator<F, K, N> where K: SimpleConvolutionKernel<F, N>, { type Id = usize; type SupportType = Weighted<Shift<K, F, N>, F>; type AllDataIter<'a> = FilterMapX< 'a, Zip<RangeFrom<usize>, SpikeIter<'a, Loc<F, N>, F>>, Self, (Self::Id, Self::SupportType), >; #[inline] fn support_for(&self, d: Self::Id) -> Self::SupportType { self.construct_kernel(&self.centres[d]) } #[inline] fn support_count(&self) -> usize { self.centres.len() } #[inline] fn all_data(&self) -> Self::AllDataIter<'_> { (0..) .zip(self.centres.iter_spikes()) .filter_mapX(self, Self::construct_kernel_and_id_filtered) } } /// Representation of a convolution operator $𝒟$. #[derive(Clone, Debug)] pub struct ConvolutionOp<F, K, BT, const N: usize> where F: Float + ToNalgebraRealField, BT: BTImpl<F, N, Data = usize>, K: SimpleConvolutionKernel<F, N>, { /// Depth of the [`BT`] bisection tree for the outputs [`Mapping::apply`]. depth: BT::Depth, /// Domain of the [`BT`] bisection tree for the outputs [`Mapping::apply`]. domain: Cube<F, N>, /// The convolution kernel kernel: K, _phantoms: PhantomData<(F, BT)>, } impl<F, K, BT, const N: usize> ConvolutionOp<F, K, BT, N> where F: Float + ToNalgebraRealField, BT: BTImpl<F, N, Data = usize>, K: SimpleConvolutionKernel<F, N>, { /// Creates a new convolution operator $𝒟$ with `kernel` on `domain`. /// /// The output of [`Mapping::apply`] is a [`BT`] of given `depth`. pub fn new(depth: BT::Depth, domain: Cube<F, N>, kernel: K) -> Self { ConvolutionOp { depth: depth, domain: domain, kernel: kernel, _phantoms: PhantomData, } } /// Returns the support generator for this convolution operator. fn support_generator(&self, μ: RNDM<F, N>) -> ConvolutionSupportGenerator<F, K, N> { // TODO: can we avoid cloning μ? ConvolutionSupportGenerator { kernel: self.kernel.clone(), centres: μ, } } /// Returns a reference to the kernel of this convolution operator. pub fn kernel(&self) -> &K { &self.kernel } } impl<F, K, BT, const N: usize> Mapping<RNDM<F, N>> for ConvolutionOp<F, K, BT, N> where F: Float + ToNalgebraRealField, BT: BTImpl<F, N, Data = usize>, K: SimpleConvolutionKernel<F, N>, Weighted<Shift<K, F, N>, F>: LocalAnalysis<F, BT::Agg, N>, { type Codomain = BTFN<F, ConvolutionSupportGenerator<F, K, N>, BT, N>; fn apply<I>(&self, μ: I) -> Self::Codomain where I: Instance<RNDM<F, N>>, { let g = self.support_generator(μ.own()); BTFN::construct(self.domain.clone(), self.depth, g) } } /// [`ConvolutionOp`]s as linear operators over [`DiscreteMeasure`]s. impl<F, K, BT, const N: usize> Linear<RNDM<F, N>> for ConvolutionOp<F, K, BT, N> where F: Float + ToNalgebraRealField, BT: BTImpl<F, N, Data = usize>, K: SimpleConvolutionKernel<F, N>, Weighted<Shift<K, F, N>, F>: LocalAnalysis<F, BT::Agg, N>, { } impl<F, K, BT, const N: usize> BoundedLinear<RNDM<F, N>, Radon, Linfinity, F> for ConvolutionOp<F, K, BT, N> where F: Float + ToNalgebraRealField, BT: BTImpl<F, N, Data = usize>, K: SimpleConvolutionKernel<F, N>, Weighted<Shift<K, F, N>, F>: LocalAnalysis<F, BT::Agg, N>, { fn opnorm_bound(&self, _: Radon, _: Linfinity) -> F { // With μ = ∑_i α_i δ_{x_i}, we have // |𝒟μ|_∞ // = sup_z |∑_i α_i φ(z - x_i)| // ≤ sup_z ∑_i |α_i| |φ(z - x_i)| // ≤ ∑_i |α_i| |φ|_∞ // = |μ|_ℳ |φ|_∞ self.kernel.bounds().uniform() } } impl<F, K, BT, const N: usize> DiscreteMeasureOp<Loc<F, N>, F> for ConvolutionOp<F, K, BT, N> where F: Float + ToNalgebraRealField, BT: BTImpl<F, N, Data = usize>, K: SimpleConvolutionKernel<F, N>, Weighted<Shift<K, F, N>, F>: LocalAnalysis<F, BT::Agg, N>, { type PreCodomain = PreBTFN<F, ConvolutionSupportGenerator<F, K, N>, N>; fn findim_matrix<'a, I>(&self, points: I) -> DMatrix<F::MixedType> where I: ExactSizeIterator<Item = &'a Loc<F, N>> + Clone, { // TODO: Preliminary implementation. It be best to use sparse matrices or // possibly explicit operators without matrices let n = points.len(); let points_clone = points.clone(); let pairs = points.cartesian_product(points_clone); let kernel = &self.kernel; let values = pairs.map(|(x, y)| kernel.apply(y - x).to_nalgebra_mixed()); DMatrix::from_iterator(n, n, values) } /// A version of [`Mapping::apply`] that does not instantiate the [`BTFN`] codomain with /// a bisection tree, instead returning a [`PreBTFN`]. This can improve performance when /// the output is to be added as the right-hand-side operand to a proper BTFN. fn preapply(&self, μ: RNDM<F, N>) -> Self::PreCodomain { BTFN::new_pre(self.support_generator(μ)) } } /// Generates an scalar operation (e.g. [`std::ops::Mul`], [`std::ops::Div`]) /// for [`ConvolutionSupportGenerator`]. macro_rules! make_convolutionsupportgenerator_scalarop_rhs { ($trait:ident, $fn:ident, $trait_assign:ident, $fn_assign:ident) => { impl<F: Float, K: SimpleConvolutionKernel<F, N>, const N: usize> std::ops::$trait_assign<F> for ConvolutionSupportGenerator<F, K, N> { fn $fn_assign(&mut self, t: F) { self.centres.$fn_assign(t); } } impl<F: Float, K: SimpleConvolutionKernel<F, N>, const N: usize> std::ops::$trait<F> for ConvolutionSupportGenerator<F, K, N> { type Output = ConvolutionSupportGenerator<F, K, N>; fn $fn(mut self, t: F) -> Self::Output { std::ops::$trait_assign::$fn_assign(&mut self.centres, t); self } } impl<'a, F: Float, K: SimpleConvolutionKernel<F, N>, const N: usize> std::ops::$trait<F> for &'a ConvolutionSupportGenerator<F, K, N> { type Output = ConvolutionSupportGenerator<F, K, N>; fn $fn(self, t: F) -> Self::Output { ConvolutionSupportGenerator { kernel: self.kernel.clone(), centres: (&self.centres).$fn(t), } } } }; } make_convolutionsupportgenerator_scalarop_rhs!(Mul, mul, MulAssign, mul_assign); make_convolutionsupportgenerator_scalarop_rhs!(Div, div, DivAssign, div_assign); /// Generates an unary operation (e.g. [`std::ops::Neg`]) for [`ConvolutionSupportGenerator`]. macro_rules! make_convolutionsupportgenerator_unaryop { ($trait:ident, $fn:ident) => { impl<F: Float, K: SimpleConvolutionKernel<F, N>, const N: usize> std::ops::$trait for ConvolutionSupportGenerator<F, K, N> { type Output = ConvolutionSupportGenerator<F, K, N>; fn $fn(mut self) -> Self::Output { self.centres = self.centres.$fn(); self } } impl<'a, F: Float, K: SimpleConvolutionKernel<F, N>, const N: usize> std::ops::$trait for &'a ConvolutionSupportGenerator<F, K, N> { type Output = ConvolutionSupportGenerator<F, K, N>; fn $fn(self) -> Self::Output { ConvolutionSupportGenerator { kernel: self.kernel.clone(), centres: (&self.centres).$fn(), } } } }; } make_convolutionsupportgenerator_unaryop!(Neg, neg);