Fri, 02 Dec 2022 21:20:04 +0200
Command line parameter passing simplifications and make `-o` required.
Remove separate Configuration, using CommandLineArgs directly.
//! Things for constructing new kernels from component kernels and traits for analysing them use serde::Serialize; use numeric_literals::replace_float_literals; use alg_tools::types::*; use alg_tools::norms::*; use alg_tools::loc::Loc; use alg_tools::sets::Cube; use alg_tools::bisection_tree::{ Support, Bounds, LocalAnalysis, GlobalAnalysis, Bounded, }; use alg_tools::mapping::Apply; use alg_tools::maputil::{array_init, map2}; use alg_tools::sets::SetOrd; use crate::fourier::Fourier; /// Representation of the product of two kernels. /// /// The kernels typically implement [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. /// /// The implementation [`Support`] only uses the [`Support::support_hint`] of the first parameter! #[derive(Copy,Clone,Serialize,Debug)] pub struct SupportProductFirst<A, B>( /// First kernel pub A, /// Second kernel pub B ); impl<A, B, F : Float, const N : usize> Apply<Loc<F, N>> for SupportProductFirst<A, B> where A : for<'a> Apply<&'a Loc<F, N>, Output=F>, B : for<'a> Apply<&'a Loc<F, N>, Output=F> { type Output = F; #[inline] fn apply(&self, x : Loc<F, N>) -> Self::Output { self.0.apply(&x) * self.1.apply(&x) } } impl<'a, A, B, F : Float, const N : usize> Apply<&'a Loc<F, N>> for SupportProductFirst<A, B> where A : Apply<&'a Loc<F, N>, Output=F>, B : Apply<&'a Loc<F, N>, Output=F> { type Output = F; #[inline] fn apply(&self, x : &'a Loc<F, N>) -> Self::Output { self.0.apply(x) * self.1.apply(x) } } impl<'a, A, B, F : Float, const N : usize> Support<F, N> for SupportProductFirst<A, B> where A : Support<F, N>, B : Support<F, N> { #[inline] fn support_hint(&self) -> Cube<F, N> { self.0.support_hint() } #[inline] fn in_support(&self, x : &Loc<F, N>) -> bool { self.0.in_support(x) } #[inline] fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { self.0.bisection_hint(cube) } } impl<'a, A, B, F : Float> GlobalAnalysis<F, Bounds<F>> for SupportProductFirst<A, B> where A : GlobalAnalysis<F, Bounds<F>>, B : GlobalAnalysis<F, Bounds<F>> { #[inline] fn global_analysis(&self) -> Bounds<F> { self.0.global_analysis() * self.1.global_analysis() } } impl<'a, A, B, F : Float, const N : usize> LocalAnalysis<F, Bounds<F>, N> for SupportProductFirst<A, B> where A : LocalAnalysis<F, Bounds<F>, N>, B : LocalAnalysis<F, Bounds<F>, N> { #[inline] fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { self.0.local_analysis(cube) * self.1.local_analysis(cube) } } /// Representation of the sum of two kernels /// /// The kernels typically implement [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. /// /// The implementation [`Support`] only uses the [`Support::support_hint`] of the first parameter! #[derive(Copy,Clone,Serialize,Debug)] pub struct SupportSum<A, B>( /// First kernel pub A, /// Second kernel pub B ); impl<'a, A, B, F : Float, const N : usize> Apply<&'a Loc<F, N>> for SupportSum<A, B> where A : Apply<&'a Loc<F, N>, Output=F>, B : Apply<&'a Loc<F, N>, Output=F> { type Output = F; #[inline] fn apply(&self, x : &'a Loc<F, N>) -> Self::Output { self.0.apply(x) + self.1.apply(x) } } impl<A, B, F : Float, const N : usize> Apply<Loc<F, N>> for SupportSum<A, B> where A : for<'a> Apply<&'a Loc<F, N>, Output=F>, B : for<'a> Apply<&'a Loc<F, N>, Output=F> { type Output = F; #[inline] fn apply(&self, x : Loc<F, N>) -> Self::Output { self.0.apply(&x) + self.1.apply(&x) } } impl<'a, A, B, F : Float, const N : usize> Support<F, N> for SupportSum<A, B> where A : Support<F, N>, B : Support<F, N>, Cube<F, N> : SetOrd { #[inline] fn support_hint(&self) -> Cube<F, N> { self.0.support_hint().common(&self.1.support_hint()) } #[inline] fn in_support(&self, x : &Loc<F, N>) -> bool { self.0.in_support(x) || self.1.in_support(x) } #[inline] fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { map2(self.0.bisection_hint(cube), self.1.bisection_hint(cube), |a, b| a.or(b)) } } impl<'a, A, B, F : Float> GlobalAnalysis<F, Bounds<F>> for SupportSum<A, B> where A : GlobalAnalysis<F, Bounds<F>>, B : GlobalAnalysis<F, Bounds<F>> { #[inline] fn global_analysis(&self) -> Bounds<F> { self.0.global_analysis() + self.1.global_analysis() } } impl<'a, A, B, F : Float, const N : usize> LocalAnalysis<F, Bounds<F>, N> for SupportSum<A, B> where A : LocalAnalysis<F, Bounds<F>, N>, B : LocalAnalysis<F, Bounds<F>, N>, Cube<F, N> : SetOrd { #[inline] fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { self.0.local_analysis(cube) + self.1.local_analysis(cube) } } /// Representation of the convolution of two kernels. /// /// The kernels typically implement [`Support`]s and [`Mapping`][alg_tools::mapping::Mapping]. // /// Trait implementations have to be on a case-by-case basis. #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] pub struct Convolution<A, B>( /// First kernel pub A, /// Second kernel pub B ); /// Representation of the autoconvolution of a kernel. /// /// The kernel typically implements [`Support`] and [`Mapping`][alg_tools::mapping::Mapping]. /// /// Trait implementations have to be on a case-by-case basis. #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] pub struct AutoConvolution<A>( /// The kernel to be autoconvolved pub A ); /// Representation a multi-dimensional product of a one-dimensional kernel. /// /// For $G: ℝ → ℝ$, this is the function $F(x\_1, …, x\_n) := \prod_{i=1}^n G(x\_i)$. /// The kernel $G$ typically implements [`Support`] and [`Mapping`][alg_tools::mapping::Mapping] /// on [`Loc<F, 1>`]. Then the product implements them on [`Loc<F, N>`]. #[derive(Copy,Clone,Serialize,Debug,Eq,PartialEq)] struct UniformProduct<G, const N : usize>( /// The one-dimensional kernel G ); impl<'a, G, F : Float, const N : usize> Apply<&'a Loc<F, N>> for UniformProduct<G, N> where G : Apply<Loc<F, 1>, Output=F> { type Output = F; #[inline] fn apply(&self, x : &'a Loc<F, N>) -> F { x.iter().map(|&y| self.0.apply(Loc([y]))).product() } } impl<G, F : Float, const N : usize> Apply<Loc<F, N>> for UniformProduct<G, N> where G : Apply<Loc<F, 1>, Output=F> { type Output = F; #[inline] fn apply(&self, x : Loc<F, N>) -> F { x.into_iter().map(|y| self.0.apply(Loc([y]))).product() } } impl<G, F : Float, const N : usize> Support<F, N> for UniformProduct<G, N> where G : Support<F, 1> { #[inline] fn support_hint(&self) -> Cube<F, N> { let [a] : [[F; 2]; 1] = self.0.support_hint().into(); array_init(|| a.clone()).into() } #[inline] fn in_support(&self, x : &Loc<F, N>) -> bool { x.iter().all(|&y| self.0.in_support(&Loc([y]))) } #[inline] fn bisection_hint(&self, cube : &Cube<F, N>) -> [Option<F>; N] { cube.map(|a, b| { let [h] = self.0.bisection_hint(&[[a, b]].into()); h }) } } impl<G, F : Float, const N : usize> GlobalAnalysis<F, Bounds<F>> for UniformProduct<G, N> where G : GlobalAnalysis<F, Bounds<F>> { #[inline] fn global_analysis(&self) -> Bounds<F> { let g = self.0.global_analysis(); (0..N).map(|_| g).product() } } impl<G, F : Float, const N : usize> LocalAnalysis<F, Bounds<F>, N> for UniformProduct<G, N> where G : LocalAnalysis<F, Bounds<F>, 1> { #[inline] fn local_analysis(&self, cube : &Cube<F, N>) -> Bounds<F> { cube.iter_coords().map( |&[a, b]| self.0.local_analysis(&([[a, b]].into())) ).product() } } macro_rules! product_lpnorm { ($lp:ident) => { impl<G, F : Float, const N : usize> Norm<F, $lp> for UniformProduct<G, N> where G : Norm<F, $lp> { #[inline] fn norm(&self, lp : $lp) -> F { self.0.norm(lp).powi(N as i32) } } } } product_lpnorm!(L1); product_lpnorm!(L2); product_lpnorm!(Linfinity); /// Trait for bounding one kernel with respect to another. /// /// The type `F` is the scalar field, and `T` another kernel to which `Self` is compared. pub trait BoundedBy<F : Num, T> { /// Calclate a bounding factor $c$ such that the Fourier transforms $ℱ\[v\] ≤ c ℱ\[u\]$ for /// $v$ `self` and $u$ `other`. /// /// If no such factors exits, `None` is returned. fn bounding_factor(&self, other : &T) -> Option<F>; } /// This [`BoundedBy`] implementation bounds $(uv) * (uv)$ by $(ψ * ψ) u$. #[replace_float_literals(F::cast_from(literal))] impl<F, C, BaseP> BoundedBy<F, SupportProductFirst<AutoConvolution<C>, BaseP>> for AutoConvolution<SupportProductFirst<C, BaseP>> where F : Float, C : Clone + PartialEq, BaseP : Fourier<F> + PartialOrd, // TODO: replace by BoundedBy, <BaseP as Fourier<F>>::Transformed : Bounded<F> + Norm<F, L1> { fn bounding_factor(&self, kernel : &SupportProductFirst<AutoConvolution<C>, BaseP>) -> Option<F> { let SupportProductFirst(AutoConvolution(ref cutoff2), base_spread2) = kernel; let AutoConvolution(SupportProductFirst(ref cutoff, ref base_spread)) = self; let v̂ = base_spread.fourier(); // Verify that the cut-off and ideal physical model (base spread) are the same. if cutoff == cutoff2 && base_spread <= base_spread2 && v̂.bounds().lower() >= 0.0 { // Calculate the factor between the convolution approximation // `AutoConvolution<SupportProductFirst<C, BaseP>>` of $A_*A$ and the // kernel of the seminorm. This depends on the physical model P being // `SupportProductFirst<C, BaseP>` with the kernel `K` being // a `SupportSum` involving `SupportProductFirst<AutoConvolution<C>, BaseP>`. Some(v̂.norm(L1)) } else { // We cannot compare None } } } impl<F : Float, A, B, C> BoundedBy<F, SupportSum<B, C>> for A where A : BoundedBy<F, B>, C : Bounded<F> { #[replace_float_literals(F::cast_from(literal))] fn bounding_factor(&self, SupportSum(ref kernel1, kernel2) : &SupportSum<B, C>) -> Option<F> { if kernel2.bounds().lower() >= 0.0 { self.bounding_factor(kernel1) } else { None } } } /// Generates on $[a, b]$ [`Support::support_hint`] for a symmetric interval $[-r, r]$. /// /// It will attempt to place the subdivision point at $-r$ or $r$. /// If neither of these points lies within $[a, b]$, `None` is returned. #[inline] pub(super) fn symmetric_interval_hint<F : Float>(r : F, a : F, b : F) -> Option<F> { if a < -r && -r < b { Some(-r) } else if a < r && r < b { Some(r) } else { None } } /// Generates on $[a, b]$ [`Support::support_hint`] for a function with monotone derivative, /// support on $[-r, r]$ and peak at $0. /// /// It will attempt to place the subdivision point at $-r$, $r$, or $0$, depending on which /// gives the longer length for the shorter of the two subintervals. If none of these points /// lies within $[a, b]$, or the resulting interval would be shorter than $0.3r$, `None` is /// returned. #[replace_float_literals(F::cast_from(literal))] #[inline] pub(super) fn symmetric_peak_hint<F : Float>(r : F, a : F, b : F) -> Option<F> { let stage1 = if a < -r { if b <= -r { None } else if a + r < -b { Some(-r) } else { Some(0.0) } } else if a < 0.0 { if b <= 0.0 { None } else if a < r - b { Some(0.0) } else { Some(r) } } else if a < r && b > r { Some(r) } else { None }; // Ignore stage1 hint if either side of subdivision would be just a small fraction of the // interval match stage1 { Some(h) if (h - a).min(b-h) >= 0.3 * r => Some(h), _ => None } }