Mon, 17 Feb 2025 14:40:59 -0500
Added tag v2.0.0-pre for changeset b3312eee105c
/*! Solver for the point source localisation problem using a forward-backward splitting method. This corresponds to the manuscript * Valkonen T. - _Proximal methods for point source localisation_, [arXiv:2212.02991](https://arxiv.org/abs/2212.02991). The main routine is [`pointsource_fb_reg`]. ## Problem <p> Our objective is to solve $$ \min_{μ ∈ ℳ(Ω)}~ F_0(Aμ-b) + α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(μ), $$ where $F_0(y)=\frac{1}{2}\|y\|_2^2$ and the forward operator $A \in 𝕃(ℳ(Ω); ℝ^n)$. </p> ## Approach <p> As documented in more detail in the paper, on each step we approximately solve $$ \min_{μ ∈ ℳ(Ω)}~ F(x) + α \|μ\|_{ℳ(Ω)} + δ_{≥ 0}(x) + \frac{1}{2}\|μ-μ^k|_𝒟^2, $$ where $𝒟: 𝕃(ℳ(Ω); C_c(Ω))$ is typically a convolution operator. </p> ## Finite-dimensional subproblems. With $C$ a projection from [`DiscreteMeasure`] to the weights, and $x^k$ such that $x^k=Cμ^k$, we form the discretised linearised inner problem <p> $$ \min_{x ∈ ℝ^n}~ τ\bigl(F(Cx^k) + [C^*∇F(Cx^k)]^⊤(x-x^k) + α {\vec 1}^⊤ x\bigr) + δ_{≥ 0}(x) + \frac{1}{2}\|x-x^k\|_{C^*𝒟C}^2, $$ equivalently $$ \begin{aligned} \min_x~ & τF(Cx^k) - τ[C^*∇F(Cx^k)]^⊤x^k + \frac{1}{2} (x^k)^⊤ C^*𝒟C x^k \\ & - [C^*𝒟C x^k - τC^*∇F(Cx^k)]^⊤ x \\ & + \frac{1}{2} x^⊤ C^*𝒟C x + τα {\vec 1}^⊤ x + δ_{≥ 0}(x), \end{aligned} $$ In other words, we obtain the quadratic non-negativity constrained problem $$ \min_{x ∈ ℝ^n}~ \frac{1}{2} x^⊤ Ã x - b̃^⊤ x + c + τα {\vec 1}^⊤ x + δ_{≥ 0}(x). $$ where $$ \begin{aligned} Ã & = C^*𝒟C, \\ g̃ & = C^*𝒟C x^k - τ C^*∇F(Cx^k) = C^* 𝒟 μ^k - τ C^*A^*(Aμ^k - b) \\ c & = τ F(Cx^k) - τ[C^*∇F(Cx^k)]^⊤x^k + \frac{1}{2} (x^k)^⊤ C^*𝒟C x^k \\ & = \frac{τ}{2} \|Aμ^k-b\|^2 - τ[Aμ^k-b]^⊤Aμ^k + \frac{1}{2} \|μ_k\|_{𝒟}^2 \\ & = -\frac{τ}{2} \|Aμ^k-b\|^2 + τ[Aμ^k-b]^⊤ b + \frac{1}{2} \|μ_k\|_{𝒟}^2. \end{aligned} $$ </p> We solve this with either SSN or FB as determined by [`crate::subproblem::InnerSettings`] in [`FBGenericConfig::inner`]. */ use colored::Colorize; use numeric_literals::replace_float_literals; use serde::{Deserialize, Serialize}; use alg_tools::euclidean::Euclidean; use alg_tools::instance::Instance; use alg_tools::iterate::AlgIteratorFactory; use alg_tools::linops::{Mapping, GEMV}; use alg_tools::mapping::RealMapping; use alg_tools::nalgebra_support::ToNalgebraRealField; use crate::dataterm::{calculate_residual, DataTerm, L2Squared}; use crate::forward_model::{AdjointProductBoundedBy, ForwardModel}; use crate::measures::merging::SpikeMerging; use crate::measures::{DiscreteMeasure, RNDM}; use crate::plot::{PlotLookup, Plotting, SeqPlotter}; pub use crate::prox_penalty::{FBGenericConfig, ProxPenalty}; use crate::regularisation::RegTerm; use crate::types::*; /// Settings for [`pointsource_fb_reg`]. #[derive(Clone, Copy, Eq, PartialEq, Serialize, Deserialize, Debug)] #[serde(default)] pub struct FBConfig<F: Float> { /// Step length scaling pub τ0: F, /// Generic parameters pub generic: FBGenericConfig<F>, } #[replace_float_literals(F::cast_from(literal))] impl<F: Float> Default for FBConfig<F> { fn default() -> Self { FBConfig { τ0: 0.99, generic: Default::default(), } } } pub(crate) fn prune_with_stats<F: Float, const N: usize>(μ: &mut RNDM<F, N>) -> usize { let n_before_prune = μ.len(); μ.prune(); debug_assert!(μ.len() <= n_before_prune); n_before_prune - μ.len() } #[replace_float_literals(F::cast_from(literal))] pub(crate) fn postprocess< F: Float, V: Euclidean<F> + Clone, A: GEMV<F, RNDM<F, N>, Codomain = V>, D: DataTerm<F, V, N>, const N: usize, >( mut μ: RNDM<F, N>, config: &FBGenericConfig<F>, dataterm: D, opA: &A, b: &V, ) -> RNDM<F, N> where RNDM<F, N>: SpikeMerging<F>, for<'a> &'a RNDM<F, N>: Instance<RNDM<F, N>>, { μ.merge_spikes_fitness( config.final_merging_method(), |μ̃| dataterm.calculate_fit_op(μ̃, opA, b), |&v| v, ); μ.prune(); μ } /// Iteratively solve the pointsource localisation problem using forward-backward splitting. /// /// The settings in `config` have their [respective documentation](FBConfig). `opA` is the /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control /// as documented in [`alg_tools::iterate`]. /// /// For details on the mathematical formulation, see the [module level](self) documentation. /// /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of /// sums of simple functions usign bisection trees, and the related /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions /// active at a specific points, and to maximise their sums. Through the implementation of the /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. /// /// Returns the final iterate. #[replace_float_literals(F::cast_from(literal))] pub fn pointsource_fb_reg<F, I, A, Reg, P, const N: usize>( opA: &A, b: &A::Observable, reg: Reg, prox_penalty: &P, fbconfig: &FBConfig<F>, iterator: I, mut plotter: SeqPlotter<F, N>, ) -> RNDM<F, N> where F: Float + ToNalgebraRealField, I: AlgIteratorFactory<IterInfo<F, N>>, for<'b> &'b A::Observable: std::ops::Neg<Output = A::Observable>, A: ForwardModel<RNDM<F, N>, F> + AdjointProductBoundedBy<RNDM<F, N>, P, FloatType = F>, A::PreadjointCodomain: RealMapping<F, N>, PlotLookup: Plotting<N>, RNDM<F, N>: SpikeMerging<F>, Reg: RegTerm<F, N>, P: ProxPenalty<F, A::PreadjointCodomain, Reg, N>, { // Set up parameters let config = &fbconfig.generic; let τ = fbconfig.τ0 / opA.adjoint_product_bound(prox_penalty).unwrap(); // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled // by τ compared to the conditional gradient approach. let tolerance = config.tolerance * τ * reg.tolerance_scaling(); let mut ε = tolerance.initial(); // Initialise iterates let mut μ = DiscreteMeasure::new(); let mut residual = -b; // Statistics let full_stats = |residual: &A::Observable, μ: &RNDM<F, N>, ε, stats| IterInfo { value: residual.norm2_squared_div2() + reg.apply(μ), n_spikes: μ.len(), ε, //postprocessing: config.postprocessing.then(|| μ.clone()), ..stats }; let mut stats = IterInfo::new(); // Run the algorithm for state in iterator.iter_init(|| full_stats(&residual, &μ, ε, stats.clone())) { // Calculate smooth part of surrogate model. let mut τv = opA.preadjoint().apply(residual * τ); // Save current base point let μ_base = μ.clone(); // Insert and reweigh let (maybe_d, _within_tolerances) = prox_penalty.insert_and_reweigh( &mut μ, &mut τv, &μ_base, None, τ, ε, config, ®, &state, &mut stats, ); // Prune and possibly merge spikes if config.merge_now(&state) { stats.merged += prox_penalty.merge_spikes( &mut μ, &mut τv, &μ_base, None, τ, ε, config, ®, Some(|μ̃: &RNDM<F, N>| L2Squared.calculate_fit_op(μ̃, opA, b)), ); } stats.pruned += prune_with_stats(&mut μ); // Update residual residual = calculate_residual(&μ, opA, b); let iter = state.iteration(); stats.this_iters += 1; // Give statistics if needed state.if_verbose(|| { plotter.plot_spikes(iter, maybe_d.as_ref(), Some(&τv), &μ); full_stats( &residual, &μ, ε, std::mem::replace(&mut stats, IterInfo::new()), ) }); // Update main tolerance for next iteration ε = tolerance.update(ε, iter); } postprocess(μ, config, L2Squared, opA, b) } /// Iteratively solve the pointsource localisation problem using inertial forward-backward splitting. /// /// The settings in `config` have their [respective documentation](FBConfig). `opA` is the /// forward operator $A$, $b$ the observable, and $\lambda$ the regularisation weight. /// The operator `op𝒟` is used for forming the proximal term. Typically it is a convolution /// operator. Finally, the `iterator` is an outer loop verbosity and iteration count control /// as documented in [`alg_tools::iterate`]. /// /// For details on the mathematical formulation, see the [module level](self) documentation. /// /// The implementation relies on [`alg_tools::bisection_tree::BTFN`] presentations of /// sums of simple functions usign bisection trees, and the related /// [`alg_tools::bisection_tree::Aggregator`]s, to efficiently search for component functions /// active at a specific points, and to maximise their sums. Through the implementation of the /// [`alg_tools::bisection_tree::BT`] bisection trees, it also relies on the copy-on-write features /// of [`std::sync::Arc`] to only update relevant parts of the bisection tree when adding functions. /// /// Returns the final iterate. #[replace_float_literals(F::cast_from(literal))] pub fn pointsource_fista_reg<F, I, A, Reg, P, const N: usize>( opA: &A, b: &A::Observable, reg: Reg, prox_penalty: &P, fbconfig: &FBConfig<F>, iterator: I, mut plotter: SeqPlotter<F, N>, ) -> RNDM<F, N> where F: Float + ToNalgebraRealField, I: AlgIteratorFactory<IterInfo<F, N>>, for<'b> &'b A::Observable: std::ops::Neg<Output = A::Observable>, A: ForwardModel<RNDM<F, N>, F> + AdjointProductBoundedBy<RNDM<F, N>, P, FloatType = F>, A::PreadjointCodomain: RealMapping<F, N>, PlotLookup: Plotting<N>, RNDM<F, N>: SpikeMerging<F>, Reg: RegTerm<F, N>, P: ProxPenalty<F, A::PreadjointCodomain, Reg, N>, { // Set up parameters let config = &fbconfig.generic; let τ = fbconfig.τ0 / opA.adjoint_product_bound(prox_penalty).unwrap(); let mut λ = 1.0; // We multiply tolerance by τ for FB since our subproblems depending on tolerances are scaled // by τ compared to the conditional gradient approach. let tolerance = config.tolerance * τ * reg.tolerance_scaling(); let mut ε = tolerance.initial(); // Initialise iterates let mut μ = DiscreteMeasure::new(); let mut μ_prev = DiscreteMeasure::new(); let mut residual = -b; let mut warned_merging = false; // Statistics let full_stats = |ν: &RNDM<F, N>, ε, stats| IterInfo { value: L2Squared.calculate_fit_op(ν, opA, b) + reg.apply(ν), n_spikes: ν.len(), ε, // postprocessing: config.postprocessing.then(|| ν.clone()), ..stats }; let mut stats = IterInfo::new(); // Run the algorithm for state in iterator.iter_init(|| full_stats(&μ, ε, stats.clone())) { // Calculate smooth part of surrogate model. let mut τv = opA.preadjoint().apply(residual * τ); // Save current base point let μ_base = μ.clone(); // Insert new spikes and reweigh let (maybe_d, _within_tolerances) = prox_penalty.insert_and_reweigh( &mut μ, &mut τv, &μ_base, None, τ, ε, config, ®, &state, &mut stats, ); // (Do not) merge spikes. if config.merge_now(&state) && !warned_merging { let err = format!("Merging not supported for μFISTA"); println!("{}", err.red()); warned_merging = true; } // Update inertial prameters let λ_prev = λ; λ = 2.0 * λ_prev / (λ_prev + (4.0 + λ_prev * λ_prev).sqrt()); let θ = λ / λ_prev - λ; // Perform inertial update on μ. // This computes μ ← (1 + θ) * μ - θ * μ_prev, pruning spikes where both μ // and μ_prev have zero weight. Since both have weights from the finite-dimensional // subproblem with a proximal projection step, this is likely to happen when the // spike is not needed. A copy of the pruned μ without artithmetic performed is // stored in μ_prev. let n_before_prune = μ.len(); μ.pruning_sub(1.0 + θ, θ, &mut μ_prev); //let μ_new = (&μ * (1.0 + θ)).sub_matching(&(&μ_prev * θ)); // μ_prev = μ; // μ = μ_new; debug_assert!(μ.len() <= n_before_prune); stats.pruned += n_before_prune - μ.len(); // Update residual residual = calculate_residual(&μ, opA, b); let iter = state.iteration(); stats.this_iters += 1; // Give statistics if needed state.if_verbose(|| { plotter.plot_spikes(iter, maybe_d.as_ref(), Some(&τv), &μ_prev); full_stats(&μ_prev, ε, std::mem::replace(&mut stats, IterInfo::new())) }); // Update main tolerance for next iteration ε = tolerance.update(ε, iter); } postprocess(μ_prev, config, L2Squared, opA, b) }