src/kernels/hat_convolution.rs

changeset 52
f0e8704d3f0e
parent 35
b087e3eab191
child 38
0f59c0d02e13
--- a/src/kernels/hat_convolution.rs	Tue Aug 01 10:25:09 2023 +0300
+++ b/src/kernels/hat_convolution.rs	Mon Feb 17 13:54:53 2025 -0500
@@ -14,9 +14,15 @@
     GlobalAnalysis,
     Bounded,
 };
-use alg_tools::mapping::Apply;
+use alg_tools::mapping::{
+    Mapping,
+    Instance,
+    DifferentiableImpl,
+    Differential,
+};
 use alg_tools::maputil::array_init;
 
+use crate::types::Lipschitz;
 use super::base::*;
 use super::ball_indicator::CubeIndicator;
 
@@ -38,6 +44,31 @@
 ///         -\frac{2}{3} (y-1)^3 & \frac{1}{2}\leq y<1. \\\\
 ///     \end{cases}
 /// $$
+// Hence
+// $$
+//     (h\*h)'(y) =
+//     \begin{cases}
+//         2 (y+1)^2 & -1<y\leq -\frac{1}{2}, \\\\
+//         -6 y^2-4 y & -\frac{1}{2}<y\leq 0, \\\\
+//         6 y^2-4 y & 0<y<\frac{1}{2}, \\\\
+//         -2 (y-1)^2 & \frac{1}{2}\leq y<1. \\\\
+//     \end{cases}
+// $$
+// as well as
+// $$
+//     (h\*h)''(y) =
+//     \begin{cases}
+//         4 (y+1) & -1<y\leq -\frac{1}{2}, \\\\
+//         -12 y-4 & -\frac{1}{2}<y\leq 0, \\\\
+//         12 y-4 & 0<y<\frac{1}{2}, \\\\
+//         -4 (y-1) & \frac{1}{2}\leq y<1. \\\\
+//     \end{cases}
+// $$
+// This is maximised at y=±1/2 with value 2, and minimised at y=0 with value -4.
+// Now observe that
+// $$
+//     [∇f(x\_1, …, x\_n)]_j = \frac{4}{σ} (h\*h)'(x\_j/σ) \prod\_{j ≠ i} \frac{4}{σ} (h\*h)(x\_i/σ)
+// $$
 #[derive(Copy,Clone,Debug,Serialize,Eq)]
 pub struct HatConv<S : Constant, const N : usize> {
     /// The parameter $σ$ of the kernel.
@@ -60,24 +91,85 @@
     }
 }
 
-impl<'a, S, const N : usize> Apply<&'a Loc<S::Type, N>> for HatConv<S, N>
+impl<'a, S, const N : usize> Mapping<Loc<S::Type, N>> for HatConv<S, N>
 where S : Constant {
-    type Output = S::Type;
+    type Codomain = S::Type;
+
     #[inline]
-    fn apply(&self, y : &'a Loc<S::Type, N>) -> Self::Output {
+    fn apply<I : Instance<Loc<S::Type, N>>>(&self, y : I) -> Self::Codomain {
         let σ = self.radius();
-        y.product_map(|x| {
+        y.cow().product_map(|x| {
             self.value_1d_σ1(x  / σ) / σ
         })
     }
 }
 
-impl<'a, S, const N : usize> Apply<Loc<S::Type, N>> for HatConv<S, N>
+#[replace_float_literals(S::Type::cast_from(literal))]
+impl<S, const N : usize> Lipschitz<L1> for HatConv<S, N>
+where S : Constant {
+    type FloatType = S::Type;
+    #[inline]
+    fn lipschitz_factor(&self, L1 : L1) -> Option<Self::FloatType> {
+        // For any ψ_i, we have
+        // ∏_{i=1}^N ψ_i(x_i) - ∏_{i=1}^N ψ_i(y_i)
+        // = [ψ_1(x_1)-ψ_1(y_1)] ∏_{i=2}^N ψ_i(x_i)
+        //   + ψ_1(y_1)[ ∏_{i=2}^N ψ_i(x_i) - ∏_{i=2}^N ψ_i(y_i)]
+        // = ∑_{j=1}^N [ψ_j(x_j)-ψ_j(y_j)]∏_{i > j} ψ_i(x_i) ∏_{i < j} ψ_i(y_i)
+        // Thus
+        // |∏_{i=1}^N ψ_i(x_i) - ∏_{i=1}^N ψ_i(y_i)|
+        // ≤ ∑_{j=1}^N |ψ_j(x_j)-ψ_j(y_j)| ∏_{j ≠ i} \max_j |ψ_j|
+        let σ = self.radius();
+        let l1d = self.lipschitz_1d_σ1() / (σ*σ);
+        let m1d = self.value_1d_σ1(0.0) / σ;
+        Some(l1d * m1d.powi(N as i32 - 1))
+    }
+}
+
+impl<S, const N : usize> Lipschitz<L2> for HatConv<S, N>
+where S : Constant {
+    type FloatType = S::Type;
+    #[inline]
+    fn lipschitz_factor(&self, L2 : L2) -> Option<Self::FloatType> {
+        self.lipschitz_factor(L1).map(|l1| l1 * <S::Type>::cast_from(N).sqrt())
+    }
+}
+
+
+impl<'a, S, const N : usize> DifferentiableImpl<Loc<S::Type, N>> for HatConv<S, N>
 where S : Constant {
-    type Output = S::Type;
+    type Derivative = Loc<S::Type, N>;
+
     #[inline]
-    fn apply(&self, y : Loc<S::Type, N>) -> Self::Output {
-        self.apply(&y)
+    fn differential_impl<I : Instance<Loc<S::Type, N>>>(&self, y0 : I) -> Self::Derivative {
+        let y = y0.cow();
+        let σ = self.radius();
+        let σ2 = σ * σ;
+        let vs = y.map(|x| {
+            self.value_1d_σ1(x  / σ) / σ
+        });
+        product_differential(&*y, &vs, |x| {
+            self.diff_1d_σ1(x  / σ) / σ2
+        })
+    }
+}
+
+
+#[replace_float_literals(S::Type::cast_from(literal))]
+impl<'a, F : Float, S, const N : usize> Lipschitz<L2>
+for Differential<'a, Loc<F, N>, HatConv<S, N>>
+where S : Constant<Type=F> {
+    type FloatType = F;
+
+    #[inline]
+    fn lipschitz_factor(&self, _l2 : L2) -> Option<F> {
+        let h = self.base_fn();
+        let σ = h.radius();
+        Some(product_differential_lipschitz_factor::<F, N>(
+            h.value_1d_σ1(0.0) / σ,
+            h.lipschitz_1d_σ1() / (σ*σ),
+            h.maxabsdiff_1d_σ1() / (σ*σ),
+            h.lipschitz_diff_1d_σ1() / (σ*σ),
+        ))
     }
 }
 
@@ -97,6 +189,54 @@
             (4.0/3.0) + 8.0 * y * y * (y - 1.0)
         }
     }
+
+    /// Computes the differential of the kernel for $n=1$ with $σ=1$.
+    #[inline]
+    fn diff_1d_σ1(&self, x : F) -> F {
+        let y = x.abs();
+        if y >= 1.0 {
+            0.0
+        } else if y > 0.5 {
+            - 8.0 * (y - 1.0).powi(2)
+        } else /* 0 ≤ y ≤ 0.5 */ {
+            (24.0 * y - 16.0) * y
+        }
+    }
+
+    /// Computes the Lipschitz factor of the kernel for $n=1$ with $σ=1$.
+    #[inline]
+    fn lipschitz_1d_σ1(&self) -> F {
+        // Maximal absolute differential achieved at ±0.5 by diff_1d_σ1 analysis
+        2.0
+    }
+
+    /// Computes the maximum absolute differential of the kernel for $n=1$ with $σ=1$.
+    #[inline]
+    fn maxabsdiff_1d_σ1(&self) -> F {
+        // Maximal absolute differential achieved at ±0.5 by diff_1d_σ1 analysis
+        2.0
+    }
+
+    /// Computes the second differential of the kernel for $n=1$ with $σ=1$.
+    #[inline]
+    #[allow(dead_code)]
+    fn diff2_1d_σ1(&self, x : F) -> F {
+        let y = x.abs();
+        if y >= 1.0 {
+            0.0
+        } else if y > 0.5 {
+            - 16.0 * (y - 1.0)
+        } else /* 0 ≤ y ≤ 0.5 */ {
+            48.0 * y - 16.0
+        }
+    }
+
+    /// Computes the differential of the kernel for $n=1$ with $σ=1$.
+    #[inline]
+    fn lipschitz_diff_1d_σ1(&self) -> F {
+        // Maximal absolute second differential achieved at 0 by diff2_1d_σ1 analysis
+        16.0
+    }
 }
 
 impl<'a, S, const N : usize> Support<S::Type, N> for HatConv<S, N>
@@ -159,21 +299,21 @@
 }
 
 #[replace_float_literals(F::cast_from(literal))]
-impl<'a, F : Float, R, C, const N : usize> Apply<&'a Loc<F, N>>
+impl<'a, F : Float, R, C, const N : usize> Mapping<Loc<F, N>>
 for Convolution<CubeIndicator<R, N>, HatConv<C, N>>
 where R : Constant<Type=F>,
       C : Constant<Type=F> {
 
-    type Output = F;
+    type Codomain = F;
 
     #[inline]
-    fn apply(&self, y : &'a Loc<F, N>) -> F {
+    fn apply<I : Instance<Loc<F, N>>>(&self, y : I) -> F {
         let Convolution(ref ind, ref hatconv) = self;
         let β = ind.r.value();
         let σ = hatconv.radius();
 
         // This is just a product of one-dimensional versions
-        y.product_map(|x| {
+        y.cow().product_map(|x| {
             // With $u_σ(x) = u_1(x/σ)/σ$ the normalised hat convolution
             // we have
             // $$
@@ -188,24 +328,66 @@
     }
 }
 
-impl<'a, F : Float, R, C, const N : usize> Apply<Loc<F, N>>
+#[replace_float_literals(F::cast_from(literal))]
+impl<'a, F : Float, R, C, const N : usize> DifferentiableImpl<Loc<F, N>>
 for Convolution<CubeIndicator<R, N>, HatConv<C, N>>
 where R : Constant<Type=F>,
       C : Constant<Type=F> {
 
-    type Output = F;
+    type Derivative = Loc<F, N>;
 
     #[inline]
-    fn apply(&self, y : Loc<F, N>) -> F {
-        self.apply(&y)
+    fn differential_impl<I : Instance<Loc<F, N>>>(&self, y0 : I) -> Loc<F, N> {
+        let y = y0.cow();
+        let Convolution(ref ind, ref hatconv) = self;
+        let β = ind.r.value();
+        let σ = hatconv.radius();
+        let σ2 = σ * σ;
+
+        let vs = y.map(|x| {
+            self.value_1d_σ1(x / σ, β / σ)
+        });
+        product_differential(&*y, &vs, |x| {
+            self.diff_1d_σ1(x  / σ, β / σ) / σ2
+        })
     }
 }
 
 
+/// Integrate $f$, whose support is $[c, d]$, on $[a, b]$.
+/// If $b > d$, add $g()$ to the result.
+#[inline]
+#[replace_float_literals(F::cast_from(literal))]
+fn i<F: Float>(a : F, b : F, c : F, d : F, f : impl Fn(F) -> F,
+                g : impl Fn() -> F) -> F {
+    if b < c {
+        0.0
+    } else if b <= d {
+        if a <= c {
+            f(b) - f(c)
+        } else {
+            f(b) - f(a)
+        }
+    } else /* b > d */ {
+        g() + if a <= c {
+            f(d) - f(c)
+        } else if a < d {
+            f(d) - f(a)
+        } else {
+            0.0
+        }
+    }
+}
+
 #[replace_float_literals(F::cast_from(literal))]
 impl<F : Float, C, R, const N : usize> Convolution<CubeIndicator<R, N>, HatConv<C, N>>
 where R : Constant<Type=F>,
       C : Constant<Type=F> {
+      
+    /// Calculates the value of the 1D hat convolution further convolved by a interval indicator.
+    /// As both functions are piecewise polynomials, this is implemented by explicit integral over
+    /// all subintervals of polynomiality of the cube indicator, using easily formed
+    /// antiderivatives.
     #[inline]
     pub fn value_1d_σ1(&self, x : F, β : F) -> F {
         // The integration interval
@@ -218,34 +400,10 @@
             y * y
         }
         
-        /// Integrate $f$, whose support is $[c, d]$, on $[a, b]$.
-        /// If $b > d$, add $g()$ to the result.
-        #[inline]
-        fn i<F: Float>(a : F, b : F, c : F, d : F, f : impl Fn(F) -> F,
-                       g : impl Fn() -> F) -> F {
-            if b < c {
-                0.0
-            } else if b <= d {
-                if a <= c {
-                    f(b) - f(c)
-                } else {
-                    f(b) - f(a)
-                }
-            } else /* b > d */ {
-                g() + if a <= c {
-                    f(d) - f(c)
-                } else if a < d {
-                    f(d) - f(a)
-                } else {
-                    0.0
-                }
-            }
-        }
-
         // Observe the factor 1/6 at the front from the antiderivatives below.
         // The factor 4 is from normalisation of the original function.
         (4.0/6.0) * i(a, b, -1.0, -0.5,
-                // (2/3) (y+1)^3  on  -1 < y ≤ - 1/2
+                // (2/3) (y+1)^3  on  -1 < y ≤ -1/2
                 // The antiderivative is  (2/12)(y+1)^4 = (1/6)(y+1)^4
                 |y| pow4(y+1.0),
                 || i(a, b, -0.5, 0.0,
@@ -266,8 +424,53 @@
                 )
         )
     }
+
+    /// Calculates the derivative of the 1D hat convolution further convolved by a interval
+    /// indicator. The implementation is similar to [`Self::value_1d_σ1`], using the fact that
+    /// $(θ * ψ)' = θ * ψ'$.
+    #[inline]
+    pub fn diff_1d_σ1(&self, x : F, β : F) -> F {
+        // The integration interval
+        let a = x - β;
+        let b = x + β;
+
+        // The factor 4 is from normalisation of the original function.
+        4.0 * i(a, b, -1.0, -0.5,
+                // (2/3) (y+1)^3  on  -1 < y ≤ -1/2
+                |y| (2.0/3.0) * (y + 1.0).powi(3),
+                || i(a, b, -0.5, 0.0,
+                    // -2 y^3 - 2 y^2 + 1/3  on  -1/2 < y ≤ 0
+                    |y| -2.0*(y + 1.0) * y * y + (1.0/3.0),
+                    || i(a, b, 0.0, 0.5,
+                            // 2 y^3 - 2 y^2 + 1/3 on 0 < y < 1/2
+                            |y| 2.0*(y - 1.0) * y * y + (1.0/3.0),
+                            || i(a, b, 0.5, 1.0,
+                                // -(2/3) (y-1)^3  on  1/2 < y ≤ 1
+                                |y| -(2.0/3.0) * (y - 1.0).powi(3),
+                                || 0.0
+                            )
+                    )
+                )
+        )
+    }
 }
 
+/*
+impl<'a, F : Float, R, C, const N : usize> Lipschitz<L2>
+for Differential<Loc<F, N>, Convolution<CubeIndicator<R, N>, HatConv<C, N>>>
+where R : Constant<Type=F>,
+      C : Constant<Type=F> {
+
+    type FloatType = F;
+
+    #[inline]
+    fn lipschitz_factor(&self, _l2 : L2) -> Option<F> {
+        dbg!("unimplemented");
+        None
+    }
+}
+*/
+
 impl<F : Float, R, C, const N : usize>
 Convolution<CubeIndicator<R, N>, HatConv<C, N>>
 where R : Constant<Type=F>,
@@ -409,7 +612,7 @@
 #[cfg(test)]
 mod tests {
     use alg_tools::lingrid::linspace;
-    use alg_tools::mapping::Apply;
+    use alg_tools::mapping::Mapping;
     use alg_tools::norms::Linfinity;
     use alg_tools::loc::Loc;
     use crate::kernels::{BallIndicator, CubeIndicator, Convolution};

mercurial